Scaling-up Human Resources for Health in Rural India to achieve health-related SDGs: Projections of Personnel and Costs for 2030

Siddhesh Zadey

For IDM Annual Symposium 2023

Association for Socially Applicable Research

Affiliations & Disclosures

- Association for Socially Applicable Research (ASAR), India
- Department of Surgery, Duke University School of Medicine, US
- Global Emergency Medicine Innovation and Implementation (GEMINI) Research Center, Duke University, US
- Dr. D.Y. Patil Medical College, Hospital, and Research Centre, India

I serve as – the Chair of the South Asian SOTA Care Working Group at The G4 Alliance, a Fellow of the Lancet Citizens' Commission for Reimagining India's Health System, on the Drafting Committee of the Maharashtra State Mental Health Policy, and on the advisory board of Nivarana Public Health Platform.

I have received honoraria from Think Global Health, The Wire, and Harvard Public Health Magazine.

People Involved

Yash Jawale

Varad Puntambekar Vedika Sharma Amit Sahu Nanditha Venkat Rachit Sekhrajka Aatmika Nair Sweta Dubey Surabhi Dharmadhikari Suraj Bhor

Indian Health System – Structure

Indian Health System – Public Financing

All-cause, government health spending, Spending per person, 2000-2020

- Public spending is about a fifth of total health spending in India [1].
- 52% of public spending goes to primary health care [2].

Critical HRH shortage: Moment of Crisis

Only **1.7** essential HRH personnel (doctors, nurses, midwives) per 1000 population (WHO-SDG target: 4.4). This drops to **1.1** after adjusting the adequate qualifications [3]. The situation is worse in rural India [4] \rightarrow

- Only 2-3 doctors and 3-4 nurses per 10,000 rural population
- Less than $\frac{1}{3}$ of essential HRH serving more than $\frac{2}{3}$ of the country's population

Crisis is greater in rural public health system at primary and secondary care levels [5].

Aims

- To estimate deficits in essential HRH in rural public health system India at primary + secondary care levels.
- To project for growth rates required to achieve Sustainable Development Goal (SDG) targets by 2030.
- To estimate recruitment and retention costs required for HRH scale-up.

Approach

- **Macro** but specific Rural | Public | Primary/Secondary | State-wise
- Historic **data trends** high value
- Prescriptions for **annual** budgeting/funding
- Library of estimates for decision-makers to choose from
- Awareness about **data limitations** when working in LMICs

Methods | Data Sources

- HRH annual count data (2009-2021): Rural Health Statistics (RHS)
- Rural population annual mid-year projections (2009-2030): National Commission on Population, Census of India 2001 & 2011
- Health services utilization in rural areas (2017-2018): National Sample Survey (NSS) 75th Round on Social Consumption in Health
- Cadre and State-wise HRH salary payments: National Health Mission (NHM) budgets and recruitment documents

Methods | Centre and Cadre Inclusions

Essential HRH	Community Healthcare Centres (CHCs)	Primary Healthcare Centres (PHCs)	Sub-Centres (SCs)
General Duty Medical Officers (GDMOs)	\checkmark	\checkmark	Not Applicable (NA)
Internal Medicine Physicians	\checkmark	NA	NA
Surgeons	\checkmark	NA	NA
Pediatricians	\checkmark	NA	NA
Obstetricians & Gynecologists	\checkmark	NA	NA
Nurses	\checkmark	\checkmark	NA
Auxiliary Nurse Midwives (ANMs)/ Health Workers Female (HWFs)	Data missing	\checkmark	\checkmark

Methods | Deficits

Two scenarios for India + 36 states & union territories -

Aspirational - serving all rural population

Realistic - based on service utilization proportions (SUPs) for public facilities

HRH density (per 1000) = Essential HRH/SUP-adjusted Population * 1000

Required HRH = Threshold x SUP-adjusted Population

Target HRH density thresholds:

Acute (based on WHO 2006 report): 2.28

WHO-SDG (based on WHO 2016 report): 4.45

Government of India or India-SDG (based on NITI Aayog 2018 SDG Baseline report): 5.55 (specific for public system HRH)

Deficit = Required HRH - Essential HRH present

Methods | Joinpoint Regression - Origin

STATISTICS IN MEDICINE Statist. Med. 19, 335-351 (2000)

PERMUTATION TESTS FOR JOINPOINT REGRESSION WITH APPLICATIONS TO CANCER RATES

HYUNE-JU KIM1*, MICHAEL P. FAY2, ERIC J. FEUER2 AND DOUGLAS N. MIDTHUNE3

¹ Syracuse University, Department of Mathematics, 215 Carnegie Building, Syracuse University, Syracuse, NY 13244-1150, U.S.A.

² National Cancer Institute, Executive Plaza North, Suite 313, 6130 Executive Boulevard, Bethesda, MD 20892, U.S.A.

³National Cancer Institute, Executive Plaza North, Suite 344, 6130 Executive Boulevard, Bethesda, MD 20892, U.S.A.

SUMMARY

The identification of changes in the recent trend is an important issue in the analysis of cancer mortality and incidence data. We apply a joinpoint regression model to describe such continuous changes and use the grid-search method to fit the regression function with unknown joinpoints assuming constant variance and uncorrelated errors. We find the number of significant joinpoints by performing several permutation tests, each of which has a correct significance level asymptotically. Each *p*-value is found using Monte Carlo methods, and the overall asymptotic significance level is maintained through a Bonferroni correction. These tests are extended to the situation with non-constant variance to handle rates with Poisson variation and possibly autocorrelated errors. The performance of these tests are studied via simulations and the tests are applied to U.S. prostate cancer incidence and mortality rates. Copyright © 2000 John Wiley & Sons, Ltd.

Image Source

Joinpoint regression

analysis - Piecewise

promoted by National

(https://surveillance.can

linear regression

developed and

Cancer Institute

cer.gov/joinpoint/)

Methods | Joinpoint Regression - Basics

The data is fitted with a minimum number of linear fits of significantly different slopes called annual percent change (APC).

Intersection point of consecutive linear fits is called a joinpoint.

Average annual percent change (AAPC) - Weighted aggregation of annual percent changes (APCs)

$$AAPC = \frac{\sum_{i=1}^{n} (w_i \times APC_i)}{\sum_{i=1}^{n} w_i}, where w is the weight for the segment$$

AAPC gives for rate of change (r) in the past that can be used for the future

Methods | Projections

How many HRH will be present?

$$N_{(i+n)} = N_i (1+r)^n$$

e.g.
$$HRH_{2030} = HRH_{2019}(1+r)^{11}$$

What should be the growth rate for achieving targets?

 $desired r = e^{\left[\frac{log\left(\frac{Desired HRH_{2030}}{HRH_{2019}}\right)}{11}\right] - 1}$

Methods | Costs Framework

HRH statistical salary =
$$\frac{\sum_{j=1}^{n} (N_j \times Salary_j)}{\sum_{j=1}^{n} N_j}$$
, where N is available count of cadre j

yearly $cost_i = \Delta HRH \ deficit_{i-(i-1)} \times (recruitment \ salary + retention \ salaries), till \Delta > 0$

$$total \ cost = \sum_{i} yearly \ cost_{i}$$

salary = basic pay + allowance

allowance = $28\% \times basic pay$

 $increment = 1\% \times allowance$

Methods | Costs Models

Basic Model

yearly
$$cost_i = \Delta HRHdeficit_{t-(i-1)}$$

 $\times [(basic pay + allowance) + ((basic pay + allowance) \times retention period)], till $\Delta > 0$$

Increment Model

yearly
$$cost_i = \Delta HRHdeficit_{i-(i-1)}$$

 $\times \left[(basic pay + allowance) + ((basic pay + allowance) + (allowance \times (1 + 1\%)^{retention period}) \right], till \Delta > 0$

0

-5AAPC 5

Results | Validating Projections

Results | Target growth rates

Results | Density Projections 2030

Results | HRH Deficit Projections

0.05 0.10 0.15 0.20 Essential HRH Deficit - SUP ($\times 10^6$)

Bihar

West Bengal Uttar Pradesh Madhya Pradesh Rajasthan Odisha Assam Maharashtra

Results | National Scale-up Costs

Basic Model			Increment Model			
Acute	WHO SDG	India SDG	Acute	WHO SDG	India SDG	
1.37T INR (18.47B USD)	3.58T INR (48.37B USD)	4.66T INR (62.91B USD)	1.38T INR (18.68B USD)	3.62T INR (48.91B USD)	4.71T INR (63.61B INR)	

	Basic Model			Increment Model		
Budget	Acute	WHO SDG	India SDG	Acute	WHO SDG	India SDG
Govt. Health Spending	4.18%	10.96%	14.25%	4.23%	11.08%	14.41%
Total Health Spending	1.22%	3.19%	4.15%	1.23%	3.23%	4.20%
Gross Domestic Product	0.04%	0.12%	0.15%	0.04%	0.12%	0.15%

Results | Statelevel Scale-up Costs

Basic Model

All values in million USD

State	Acute	WHO SDG	India SDG
Uttar Pradesh	2140	6170	8120
Bihar	2220	5450	7000
Rajasthan	1920	5100	6630
West Bengal	2260	5160	6560
Madhya Pradesh	1650	3760	4780
Odisha	1610	3610	4580
Assam	1200	2990	3860
Chhattisgarh	860	2160	2800
Gujarat	680	2040	2700
Tamil Nadu	630	1720	2250
Karnataka	650	1660	2150
Jammu and Kashmir	590	1560	2030
Maharashtra	415	1340	1790
Andhra Pradesh	86	1120	1630
Haryana	287	850	1120
Himachal Pradesh	328	740	940
Punjab	165	590	790
Jharkhand	225	520	670
Uttarakhand	197	487	630
Kerala		285	476
Meghalaya	133	351	457
Manipur	92	248	323
Arunachal Pradesh	34	137	186
Goa	19	61	81
Mizoram	6	53	76
Puducherry	16	43	56
Sikkim	13	38	50
Delhi	20	40	50
Tripura	14	33	42
Dadra and Nagar Haveli	10	28	37
Andaman and Nicobar Islands		19	31
Nagaland	2	9	12
Chandigarh			
Daman and Diu			
Lakshadweep			

Limitations

- Lack of availability of high-resolution data
- Error estimation using constant variance for several years
- Growth rate assumed to be exponential
- Simplified salary model may lead to cost misidentification
- All costs estimated at 2019 level and are not adjusted for inflation
- Service utilization proportions are based on cross-sectional estimates

Significance

- **Data-driven** estimates for the required growth rate and target gaps for SDG 2030.
- Modeling aspirational and realistic scenarios gives sensitivity estimates useful for decision-makers and funders.
- Cost estimates advocate for increased spending and appropriate allocation for HRH in national and state budgets as part of HSS.
- Analysis at the state-level points to regions that need **immediate attention** and investments.

Potential Models of Funding HRH In Rural Primary Health Care

8. Dutta M, et al. (2020) DOI: 10.4103/jfmpc.jfmpc_1131_20 Image: NITI Aayog, SAMRIDH (2022) ISBN: 978-81-953811-8-0c

Scope for DAH for HRH funding

Flows of global health financing, 2021 0

Total dollars spent for all sources, channels, and health focus areas: \$67 billion **Dollars spent for selected source, channel, and health focus area: \$1.8 billion**

Connect: sidzadey@asarforindia.org

Twitter: @RantingSid

LinkedIn: Siddhesh Zadey

Visit: ASAR

RESULTS FOR ASPIRATIONAL SCENARIO MODELING

Methods | Joinpoint Regression - Application

Log-transformed data with an autocorrelated error model. HRH counts with constant variance error type.

Model capped to find a maximum of two joinpoints. The model with the optimal number of changepoints selected using the permutation test for best fit from 4499 permutations with 0.05 significance level.

95% upper and lower confidence intervals (CI) for the AAPC values.

AAPCs of available HRH 2009-2019 data both at national and state-level calculated in Joinpoint (Command-Line (Batch/Callable) version 4.8.0.1).

For incomplete data at state-level, data up to most recent complete year used. Analysis performed using Python Jupyter notebooks (Python 3.7.3, Anaconda, Inc.).

Results | Statelevel Scale-up Costs

Increment Model

All values in million USD

State/UT	Acute	WHO SDG	India SDG
Uttar Pradesh	2160	6240	8210
Bihar	2250	5510	7080
Rajasthan	1950	5150	6710
West Bengal	2280	5220	6640
Madhya Pradesh	1670	3800	4830
Odisha	1630	3650	4630
Assam	1210	3020	3910
Chhattisgarh	870	2190	2830
Gujarat	690	2060	2730
Tami Nadu	640	1740	2280
Karnataka	660	1680	2180
Jammu and Kashmir	590	1580	2060
Maharashtra	419	1350	1810
Andhra Pradesh	87	1140	1650
Haryana	290	860	1130
Himachal Pradesh	332	750	950
Punjab	167	590	800
Jharkhand	228	530	670
Uttarakhand	199	493	630
Kerala		288	481
Meghalaya	135	355	462
Manipur	93	250	326
Arunachal Pradesh	34	138	189
Goa	20	62	82
Mizoram	6	54	77
Puducherry	16	44	57
Sikkim	13	38	51
Delhi	20	40	50
Tripura	14	33	42
Dadra and Nagar Haveli	10	28	37
Andaman and Nicobar Islands		20	31
Nagaland	2	9	12
Chandigarh			
Daman and Diu			
Lakshadweep			

Results | Target growth rates

ASPIRATIONAL SCENARIO 6 AAPC=26.53% 5.5 REALISTIC SCENARIO people) 5 1000 people) > u AAPC=17.91% 5.3 4.45 AAPC=24.12% Essential HRH (per 1000 4 Norms AAPC-15 66% 4.45 Norms WHO SDG 르 WHO SDG India SDG India SDG SUP 3 Acute Acute ential HBH -z AAPC+8-84* 2.25 2.28 AAPC=16.8% 2 O Data × Projection Data × Projection 2009 2012 2015 2018 2021 2027 0 2024 2030 Year 1 AAPC=2.59% 0 2009 2012 2015 2018 2021 2024 2027 2030 Year

Results | HRH Deficit Projections

ASPIRATIONAL SCENARIO

Results | National Scale-up Costs

Basic model			Increment model			
Acute	WHO SDG	India SDG	Acute	WHO SDG	India SDG	
4.34T INR (58.54B USD)	9.43T INR (127.3B USD)	11.9T INR (160.64B USD)	4.39T INR (59.19B USD)	9.54T INR (128.72B USD)	12.04T INR (162.44B USD)	

	Basic model			Increment model		
Budget	Acute	WHO SDG	India SDG	Acute	WHO SDG	India SDG
Govt. Health Spending	13.26%	28.83%	36.38%	13.41%	29.15%	36.79%
Total Health Spending	3.86%	8.40%	10.60%	3.91%	8.49%	10.72%
Gross Domestic Product	0.14%	0.31%	0.39%	0.14%	0.31%	0.39%

