A Framework to Assess Poliovirus Elimination from Clinical and Environmental Surveillance Data

Kath O'Reilly Kathleen.oreilly@lshtm.ac.uk Assoc Prof, LSHTM 23 May 2023, IDM Symposium

Background

- Polio modellers & other stakeholders focus where cases and ES¹ detections are
 - Vaccine effectiveness & strategies to reduce transmission
- We will explore "the other side"...pathways to eradication
- How it works (endemic countries):²
 - "Interruption of transmission", ie no cases or ES detections for 3 years*
 - Data reviewed by certification committees: National, Regional, Global
 - Certification
 - Cessation process starts, ie. removal of OPV

¹ Environmental surveillance ² GPEI Strategic Plan 2022-26 * Stated in 21st GCC report

Modelling! "Eradication of poliomyelitis: when can one be sure that polio virus transmission has been terminated?" *Eichner & Dietz Am J Epi 1996*

"The case-free period must exceed 3 years before one can be 95% certain that there has been local extinction of the wild polio virus infection"

Further 21st century considerations:

- Perfect surveillance for cases was assumed, this might not reflect reality
- ES has likely improved surveillance for polioviruses¹
- Waiting 3 years provides no incentives to improve surveillance

for \angle years, shent infections are still present in up to $\angle 0$ percent of the simulations (figure 1) if one of 200 infections leads to paralysis. Only after at least 4 years without paralytic cases is local extinction likely, with

1 O'Reilly et al (2015) BMC ID DOI: 10.1186/s12879-018-3070-4

- Empirical approaches to inform on time between cases
- Statistical model for estimating surveillance sensitivity and probability of elimination
- Informing policy

Empirical approaches

Previous WPV1 outbreaks (2000-2011)

- Outbreaks defined by viral genotype & cluster
- Fully observed
- N = 34, with 13 of size > 3 polio cases
- All have 'tails' and some have resurgence...
- If all cases in outbreak are Y₁...Y_f, what is the distribution of time between cases?
- Note: no ES during this time*

* Not much, and not included in this analysis

Empirical approaches

Previous WPV1 outbreaks (2000-2011)

- Outbreaks defined by viral genotype & cluster
- Fully observed
- N = 34, with 13 of size > 3 polio cases
- All have 'tails' and some have resurgence.
- If all cases in outbreak are Y₁...Y_f, what is tl distribution of time between cases?

Cluster "l1C4"

- N = 34, affecting YEM, CAF, CAE
- Longest wait, 197 days (median, 5 days)

Empirical approaches

Previous WPV1 outbreaks (2000-2011)

- Outbreaks defined by viral genotype & cluster
- Fully observed
- N = 34, with 13 of size > 3 polio cases
- All have 'tails' and some have resurgence.
- If all cases in outbreak are Y₁...Y_f, what is the distribution of time between cases?

Cluster "l1C4"

- N = 34, affecting YEM, CAF, CAE
- Longest wait, **197 days** (median, 5 days)

All Clusters

- A lot of variability in how long is worth waiting...many influencing factors...
- Longest wait, 537 days
- Also, Nigeria near elimination in 2016...Adamu et al. (2019) MMWR

Start with a positive null hypothesis:

H_o: Poliovirus is present in the population above a pre-determined threshold (design prevalence)

Aim of the analysis is to dis-prove this hypothesis, using evidence from data

The framework provides as outputs;

- 1. Surveillance sensitivity (for AFP and ES, at design prevalence)
- 2. Poliovirus transmission risk
- 3. Probability of being infection free, at time *t* after the last detection
- 4. Scenarios of surveillance and how this affects sensitivity & Pr(infection free)

See O'Reilly et al. (2020) Epidemiology and Infection DOI: 10.1017/S0950268820001004. for application of methods to UK polio surveillance

2. Surveillance Pathways

AFP and ES surveillance pathways are defined

- Each step has a probability of detection, estimated from data
- Sensitivity of each system is estimated

Account for variability in transmission risk

- Immunity
- Previous cases and ES detections

2a. AFP Surveillance

Sensitivity of detecting at least 1 infection from AFP surveillance is low (<1%)

- We know this, estimate largely here for comparison

Caveats in current analysis

- Have not (yet) included impact of district variability in AFP notification and stool data
- Impact of conflict not included, such as...
 - Increased poliovirus risk (reduction in immunity, increase in movement)
 - Reduced probability of AFP notification, stool samples

		Should this
		vary by
SurveillanceNode	Estimates	district?
AFPcase (inf ratio)	190 (250-150)	No
AFPnotified	0.9 (0.6-0.999)	Yes
AFPStool	0.8 (0.5-0.95)	Yes
AFPTest	0.97 (0.95-0.999)	Yes
AFPSens	0.00315 (0.00173-0.00476)	

AFP Surveillance

Environmental Surveillance (1)

	SurveillanceNode	Estimates	Comments
Current ES data			Proportion in
-100 'regular' sites in Pakistan and Afghanistan	ESCatch	0.58 (0.01-0.8)	catchment
			Pr(shedder poop
Data that informs the model			caught in ES
 Catchment sizes (ESCatch) 			samples) – effect of
• Catchment covered avg r8% (80% Cl 1-100%) of	ESSample	0.99 (0.9-0.999)	sampling frequency
the negative based on waterabed 1			Virus load above LoD
the population based on watershed *	ESTest	0.9 (0.7-0.99)	 effect of site factors
 Detection per mth was 47% (80% Cl 1-72%) based 	ESSens	0.491 (0.385 0.552)	

Sampling frequency (ESSample)

on stats model¹

- monthly-fortnightly sampling
- Fortnightly sampling Pr(capture) ~ 99%
- Monthly Pr(capture) ~ 46%

Of districts with Environmental Surveillance...

Sensitivity of Detecting 1 Infection

¹ O'Reilly et al. (2015) BMC Infectious Diseases DOI: 10.1186/s12879-018-3070-4.

Poliovirus risk

Circulation Risk Apr-2023 Last 6 months

Detection of Poliovirus Each Month

If poliovirus was present at least at 1 infection per 100,000 in 1 district, what is the probability that it would be detected?

Main Results

National sensitivity per month

- AFP alone 2% (95% 1-4%)
- AFP & ES 19% (95% 18-20%)

Sensitivity varies across districts

- Varying circulation risk
- Presence / absence ES

3. Probability of being infection free

No detections from Mar 2023 onwards – how long should we wait?

Using a prior chance ~50% of being infection free, each month is updated using the fact that surveillance has happened and nothing is detected

Main results

AFP Surveillance

Not very informative (national sensitivity ~2%)

AFP & ES Surveillance

 Pr(infection free) improves in time, with good confidence at 2 years. (national sensitivity ~19%)

Caveats

The Prior value of being infection free has a big effect on the result, but is not known

Could use Expert Elicitation to inform prior

Question posed by GCC¹ in July 2021, "does global certification of WPV1 eradication require a full three years?"

Presented to GCC in March 2022

- IDM and Kid Risk also presented modelling: different models but similar conclusion
- Alongside review of surveillance tools (genomics, ES)

GCC meeting in July 2022²

• "GCC is recommending the adoption of a 'flexible' approach to certification"

¹GCC - Global Certification Committee ² https://polioeradication.org/news-post/gcc-reviews-global-certification-criteria/

Discussion

- The *infection free* framework is a tool that estimates the sensitivity of detecting poliovirus
 - Also important for cVDPV2 analysis
 - Potential for use in other diseases approaching elimination
- Confidence in elimination can be improved with more information
 - Target more high risk districts
 - Sensitivity of detection can also reduce (emph high quality ES sites)
- This work is on-going...
 - Precise values of sensitivity shouldn't be taken literally
 - Relative values should be informative, eg. AFP vs. AFP and ES combined, ES sampling options
 - Aiming to improve methods & analysis,
 - "Quality" metrics for ES sites, catchment area analysis, impact of conflict and population mobility

Thank you for listening!

Research funding: BMGF: OPP1191821 & INV-049298 WHO: PRC funding

LSHTM colleagues:

W John Edmunds, Megan Auzenbergs, Paul Fine, Neil Pearce, Emily Nightingale Members of CMMID

IDM & BMGF:

Hil Lyons, Arie Voorman, Corey Peak, Rachel Burke

GPEI stakeholders and group members:

Country partners, GCC members, modellers within the SAM

GLOBAI

LONDON

SCH()()Lot

Options to improve WPV detection...

- **1.** Improve AFP sensitivity (eg. increase stool adequacy, etc)
 - Limited impact because of infection:case ratio
 - Could improve to 4% (95% 3-5%) at most
- 2. Increase ES sampling from fortnightly to weekly
 - Limited impact
 - Fortnightly is likely sufficient due to shedding profile
 - Exception is 'catching' shedders from other districts
- Increase number of ES sites in high risk districts (from ~90 in 2022)
 - + 20 sites, sensitivity 31% (95% 30-32%)
 - + 40 sites, sensitivity 37% (95% 35-38%)
 - Results in a rapid improvement in confidence to within 1 year
 - A practical challenge?

Extra - Poliovirus Transmission Risk

For risk-based surveillance, we want to have better surveillance in places with higher risk

Transmission risk calculated as;

 $Risk(i) = 1 - Imm(i)^{\sum_{j} Case(j).Rad(ij)}$

White squares indicate ES sites returning (WPV) negative samples