
AI ASSISTED
CODING

IDM SPRING 2023 SYMPOSIUM

CHRISTOPHER LORTON

mailto:christopher.lorton@gatesfoundation.org?subject=AI%20Assisted%20Coding

BREAKOUT SESSION RESOURCES

Source Code Repository with instructions to get
started with hands-on exercise:

https://tinyurl.com/idmai23

https://tinyurl.com/idmai23

MAGICAL BUT BY
NO MEANS
INFALLIBLE.

BRING YOUR CODING SKILLS!

WHAT IS “BETTER”?

Presenter Notes
Presentation Notes
Impressive – amazing - breadth of knowledge.C.f., Google or Bing search – what’s the website? WebMD or Mayo Clinic more reliable than joesmedicaladvice.C.f., Stack Overflow – answer ratings.How do you know what is “better”? Better prompt? Better answer?

CHATGPT V GITHUB COPILOT

ChatGPT
• Built on GPT-3.5 and GPT-4

• Fine-tuned for conversational applications

• GPT-3.5 4k tokens (8k) / GPT-4 8k (32k)

• GPT-4 1012 parameters(?)

GitHub Copilot
• Built on OpenAI Codex (GPT-3 + 159GB Python

code from 54M GitHub repositories)

• “Featuring a general purpose programming
model, OpenAI Codex can be applied to
essentially any programming task. OpenAI has
used it for transpilation as well as for explaining
and refactoring code.”

SCENARIOS
• Explain Existing Code

• Better than humans? TBD

• Optimize Existing Code

• Effective with knowledgeable guidance

• Translate Code from One Coding Language to Another

• Write Code from Scratch

• Incremental

• With Tests

• Basic SIR (R) and SEIR (Python) models from scratch

• With caveats

Presenter Notes
Presentation Notes
Only so much context. Some things, e.g., ”magic numbers” cannot be divined.Optimization – 1) optimized for humans, readability, and maintenance or 2) optimized for runtime?How would you know? Touches on testing.Code translation – how do you know if it is correct?Writing code from scratch – similar to personal development or giving instructions – lay out the process incrementally.Include tests!Go for it? SIR (R) and SEIR (Python) models in one fell swoop.

PERSONAL EXAMPLES

• Writing a script in the Julia programming language.

• Extracting data from a JSON formatted data file.

• Writing docstrings for Python functions.

• Translating Intel AVX instructions to ARM NEON (C++).

• Translating MATLAB code to Python.

• Writing plotting code in Python (matplotlib) and R.

JUST FOR FUN: FIZZBUZZ IN LOLCODE

User: Can you re-write the classic
FizzBuzz problem in LOLCODE?

ChatGPT: Sure! Here's the classic
FizzBuzz problem implemented in

LOLCODE:

HAI 1.2
CAN HAS STDIO?

I HAS A NUM
I HAS A LIMIT
GIMMEH "Enter the limit: " ANS
VISIBLE "FizzBuzz counting up to " ANS "!"

I HAS A COUNT ITZ 1
IM IN YR LOOP UPPIN YR COUNT TIL BOTH SAEM COUNT AN ANS
 I HAS A MOD3 ITZ MOD OF COUNT AN 3
 I HAS A MOD5 ITZ MOD OF COUNT AN 5

 BOTH SAEM MOD3 AN 0
 O RLY?
 YA RLY
 BOTH SAEM MOD5 AN 0
 O RLY?
 YA RLY
 VISIBLE "FizzBuzz"
 NO WAI
 VISIBLE "Fizz"
 OIC
 NO WAI
 BOTH SAEM MOD5 AN 0
 O RLY?
 YA RLY
 VISIBLE "Buzz"
 OIC
 OIC

 IZ COUNT BIGGER THAN ANS
 O RLY?
 YA RLY
 GTFO
 OIC
IM OUTTA YR LOOP

KTHXBYE

https://en.wikipedia.org/wiki/Fizz_buzz
https://en.wikipedia.org/wiki/LOLCODE

EXPLAIN EXISTING CODE
load ../data/X_ref.mat;
X_ref = X;
load ../data/X_nref.mat;
X_nref = X;
clear X;
for patIndex = 1 : length(X_ref(1,:))
 msg = sprint(”Processing sample %d”, pathIndex)
 disp(msg)
 % these are SNP positions, P. falc has 5300 genes, several SNP each
 for geneIndex = 1 : length(X_nref(:,1))
 % cleaning and normalizing read count data
 totRead = X_ref(geneIndex,patIndex) + X_nref(geneIndex,patIndex);
 if totRead < 5
 X(geneIndex,patIndex) = 4;
 Xa(geneIndex,patIndex) = nan;
 elseif (X_nref(geneIndex,patIndex)<=1) && (X_ref(geneIndex,patIndex)>=5)
 X(geneIndex,patIndex) = 0;
 Xa(geneIndex,patIndex) = 0;
 elseif (X_ref(geneIndex,patIndex)<=1) && (X_nref(geneIndex,patIndex)>=5)
 X(geneIndex,patIndex) = 1;
 Xa(geneIndex,patIndex) = 1;
 else
 X(geneIndex,patIndex) = 2;
 Xa(geneIndex,patIndex) = X_nref(geneIndex,patIndex)/totRead;
 end
 end
end

This MATLAB code performs data processing on read count data stored in two matrices, `X_ref` and `X_nref`. Here's a breakdown of the code:

1. `load ../data/X_ref.mat;` and `load ../data/X_nref.mat;`: These commands load the contents of the files "X_ref.mat" and "X_nref.mat" respectively, which contain the
read count data. The data is then stored in the variables `X_ref` and `X_nref`.

2. `X_ref = X;` and `X_nref = X;`: These lines create copies of the loaded data and store them in new variables `X_ref` and `X_nref`. This step is done to preserve the original
data while performing data cleaning.

3. `clear X;`: This command clears the variable `X`, which was used to create the copies in the previous step. This is done to avoid confusion and potential errors later in
the code.

4. The code then enters a nested loop, iterating over each sample (patIndex) and each gene (geneIndex) in the read count data.

5. `msg = sprintf("Processing sample %d ", patIndex)`: This line creates a string message indicating the current sample being processed.

6. `disp(msg)`: This command displays the message on the command window.

7. The loop then proceeds to clean and normalize the read count data for each gene in the current sample.

8. `totRead = X_ref(geneIndex,patIndex) + X_nref(geneIndex,patIndex);`: This line calculates the total read count for the current gene and sample by summing the read
counts from `X_ref` and `X_nref`.

9. The following conditional statements check the value of `totRead` to determine how to clean and normalize the data:

 a. If `totRead` is less than 5, it means the read count is too low. In this case, the code assigns a value of 4 to `X(geneIndex,patIndex)`, and assigns NaN (Not-a-Number) to
`Xa(geneIndex,patIndex)`.

 b. If `totRead` is greater than or equal to 5, and `X_nref` is less than or equal to 1 while `X_ref` is greater than or equal to 5, the code assigns a value of 0 to
`X(geneIndex,patIndex)` and `Xa(geneIndex,patIndex)`.

 c. If `totRead` is greater than or equal to 5, and `X_ref` is less than or equal to 1 while `X_nref` is greater than or equal to 5, the code assigns a value of 1 to
`X(geneIndex,patIndex)` and `Xa(geneIndex,patIndex)`.

 d. If none of the above conditions are met, the code assigns a value of 2 to `X(geneIndex,patIndex)`, and calculates the ratio of `X_nref(geneIndex,patIndex)` to `totRead`
and assigns it to `Xa(geneIndex,patIndex)`.

10. The loop continues until all genes in all samples have been processed.

In summary, this code loads read count data from two files, creates copies of the data, and then performs data cleaning and normalization based on certain conditions.
The cleaned and normalized data is stored in the variable `X`, and additional normalized data is stored in the variable `Xa`.

a. If `totRead` is less than 5, it means the read
count is too low. In this case, the code assigns a
value of 4 to `X(geneIndex,patIndex)`, and
assigns NaN (Not-a-Number) to
`Xa(geneIndex,patIndex)`.

d. If none of the above conditions are met, the
code assigns a value of 2 to
`X(geneIndex,patIndex)`, and calculates the ratio
of `X_nref(geneIndex,patIndex)` to `totRead`
and assigns it to `Xa(geneIndex,patIndex)`.

In summary, this code loads read count data
from two files, creates copies of the data, and
then performs data cleaning and normalization
based on certain conditions. The cleaned and
normalized data is stored in the variable `X`, and
additional normalized data is stored in the
variable `Xa`.

Presenter Notes
Presentation Notes
Extensive answer with some data/insights amidst the noise.

EXTRACT CODE
Given the following MATLAB code, extract the two loops into a function taking two
input matrices and returns two output matrices…
> Here's the extracted function from the given MATLAB code:
function [X, Xa] = cleanAndNormalize(X_ref, X_nref)
 X = zeros(size(X_ref));
 Xa = NaN(size(X_ref));
 for patIndex = 1 : length(X_ref(1,:))
 msg = sprintf("Processing sample %d ", patIndex);
 disp(msg);
 for geneIndex = 1 : length(X_nref(:,1))
 totRead = X_ref(geneIndex,patIndex) + X_nref(geneIndex,patIndex);
 if totRead < 5
 X(geneIndex,patIndex) = 4;
 Xa(geneIndex,patIndex) = NaN;
 elseif (X_nref(geneIndex,patIndex) <= 1) && (X_ref(geneIndex,patIndex) >= 5)
 X(geneIndex,patIndex) = 0;
 Xa(geneIndex,patIndex) = 0;
 elseif (X_ref(geneIndex,patIndex) <= 1) && (X_nref(geneIndex,patIndex) >= 5)
 X(geneIndex,patIndex) = 1;
 Xa(geneIndex,patIndex) = 1;
 else
 X(geneIndex,patIndex) = 2;
 Xa(geneIndex,patIndex) = X_nref(geneIndex,patIndex) / totRead;
 end
 end
 end
end

Presenter Notes
Presentation Notes
Right on. Exactly what we asked for.

OPTIMIZE CODE
Please optimize the for loop in the previous code..
function [X, Xa] = cleanAndNormalize(X_ref, X_nref)
 % Calculate total read counts for each gene and sample
 totRead = X_ref + X_nref;

 % Initialize X and Xa matrices with default values
 X = repmat(4, size(X_ref));
 Xa = nan(size(X_ref));

 % Set conditions for data cleaning and normalization
 condition1 = totRead >= 5 & X_nref <= 1 & X_ref >= 5;
 condition2 = totRead >= 5 & X_ref <= 1 & X_nref >= 5;
 condition3 = ~condition1 & ~condition2;

 % Apply conditions to update X and Xa matrices
 X(condition1) = 0;
 Xa(condition1) = 0;

 X(condition2) = 1;
 Xa(condition2) = 1;

 X(condition3) = 2;
 Xa(condition3) = X_nref(condition3) ./ totRead(condition3);
end

> By utilizing element-wise operations and logical indexing, the optimized code avoids the need for explicit
nested loops. Instead, it performs calculations on entire matrices at once, resulting in improved efficiency
and faster execution.

Presenter Notes
Presentation Notes
Looks good at first glance. However…

HMMM…
function [X, Xa] = cleanAndNormalize(X_ref, X_nref)
 X = zeros(size(X_ref));
 Xa = NaN(size(X_ref));
 for patIndex = 1 : length(X_ref(1,:))
 msg = sprintf("Processing sample %d ", patIndex);
 disp(msg);
 for geneIndex = 1 : length(X_nref(:,1))
 totRead = X_ref(geneIndex,patIndex) +
 X_nref(geneIndex,patIndex);
 if totRead < 5
 X(geneIndex,patIndex) = 4;
 Xa(geneIndex,patIndex) = NaN;
 elseif (X_nref(geneIndex,patIndex) <= 1) &&
 (X_ref(geneIndex,patIndex) >= 5)
 X(geneIndex,patIndex) = 0;
 Xa(geneIndex,patIndex) = 0;
 elseif (X_ref(geneIndex,patIndex) <= 1) &&
 (X_nref(geneIndex,patIndex) >= 5)
 X(geneIndex,patIndex) = 1;
 Xa(geneIndex,patIndex) = 1;
 else
 X(geneIndex,patIndex) = 2;
 Xa(geneIndex,patIndex) = X_nref(geneIndex,patIndex)/totRead;
 end
 end
 end
end

function [X, Xa] = cleanAndNormalize(X_ref, X_nref)
 % Calculate total read counts for each gene and sample
 totRead = X_ref + X_nref;

 % Initialize X and Xa matrices with default values
 X = repmat(4, size(X_ref));
 Xa = nan(size(X_ref));

 % Set conditions for data cleaning and normalization
 condition1 = totRead >= 5 & X_nref <= 1 & X_ref >= 5;
 condition2 = totRead >= 5 & X_ref <= 1 & X_nref >= 5;
 condition3 = ~condition1 & ~condition2;

 % Apply conditions to update X and Xa matrices
 X(condition1) = 0;
 Xa(condition1) = 0;

 X(condition2) = 1;
 Xa(condition2) = 1;

 X(condition3) = 2;
 Xa(condition3) = X_nref(condition3) ./ totRead(condition3);
end

Presenter Notes
Presentation Notes
Nice job initializing with the “default” values.Oops, condition3 should also be conditional on totRead < 5.

TEST IT
Write a test function to load data/X_ref.mat into a variable X_ref and data/X_nref.mat into a variable
X_nref and then compare the results of calling the function cleanAndNormalizeA() and the function
cleanAndNormalizeB() with X_ref and X_nref.

function testCleanAndNormalize()
 % Load data/X_ref.mat and data/X_nref.mat
 load('data/X_ref.mat');
 X_ref = X;
 load('data/X_nref.mat');
 X_nref = X;

 % Call cleanAndNormalizeA and cleanAndNormalizeB
 [Xa_A, Xa_Aa] = cleanAndNormalizeA(X_ref, X_nref);
 [Xa_B, Xa_Ba] = cleanAndNormalizeB(X_ref, X_nref);

 % Compare the results
 areEqual_Xa = isequal(Xa_A, Xa_B);
 areEqual_Xa = isequal(Xa_Aa, Xa_Ba);

 if areEqual_Xa && areEqual_Xa
 disp('Both versions of cleanAndNormalize produce the same results.');
 else
 disp('There is a difference between the results of cleanAndNormalizeA and cleanAndNormalizeB.');
 end
end

> In this test function, the X_ref and X_nref matrices are loaded from the respective files. Then, both
versions of the cleanAndNormalize function are called with these matrices. The results of both versions
are stored in separate variables. Finally, the function compares the results of Xa and Xa matrices from
both versions to check if they are equal. If they are equal, it displays a message indicating that both
versions produce the same results. Otherwise, it displays a message indicating that there is a difference
between the results of the two versions.

Presenter Notes
Presentation Notes
Overwrites the result variable with the second check.Doesn’t take into account that Xa might have NaN’s which we want to consider equivalent.Not a great job of figuring out the return values from cleanAndNormalize() are X and Xa (also noted in the explanation).

HELP ME FIX YOUR CODE...

Me: Write the MATLAB code to compare two matrices that might have NaN values in them.

ChatGPT: To compare two matrices that might have NaN values in them, you can use the isequaln
function in MATLAB.

MATLAB to Python

function [X, Xa] = cleanAndNormalize(X_ref, X_nref)
 % Calculate total read counts for each gene and sample
 totRead = X_ref + X_nref;

 % Initialize X and Xa matrices with default values
 X = repmat(4, size(X_ref));
 Xa = nan(size(X_ref));

 % Set conditions for data cleaning and normalization
 condition1 = totRead >= 5 & X_nref <= 1 & X_ref >= 5;
 condition2 = totRead >= 5 & X_ref <= 1 & X_nref >= 5;
 condition3 = ~condition1 & ~condition2;

 % Apply conditions to update X and Xa matrices
 X(condition1) = 0;
 Xa(condition1) = 0;

 X(condition2) = 1;
 Xa(condition2) = 1;

 X(condition3) = 2;
 Xa(condition3) = X_nref(condition3) ./ totRead(condition3);
end

import numpy as np

X_ref = np.load('../data/X_ref.npy')
X_nref = np.load('../data/X_nref.npy')

X_ref_copy = np.copy(X_ref)
X_nref_copy = np.copy(X_nref)

Calculate total read counts for each gene and sample
totRead = X_ref_copy + X_nref_copy

Initialize X and Xa arrays with default values
X = np.full_like(X_ref_copy, 4)
Xa = np.empty_like(X_ref_copy)
Xa[:] = np.nan

Set conditions for data cleaning and normalization
condition1 = np.logical_and.reduce((totRead >= 5, X_nref_copy <= 1, X_ref_copy >= 5))
condition2 = np.logical_and.reduce((totRead >= 5, X_ref_copy <= 1, X_nref_copy >= 5))
condition3 = np.logical_not(np.logical_or(condition1, condition2))

Apply conditions to update X and Xa arrays
X[condition1] = 0
Xa[condition1] = 0

X[condition2] = 1
Xa[condition2] = 1

X[condition3] = 2
Xa[condition3] = X_nref_copy[condition3] / totRead[condition3]

CHATGPT ASSISTANCE

User: Write the code to extract variable "X" from a MATLAB .mat file using Python and the scipy package.

ChatGPT: Certainly! Here's an example code snippet that demonstrates how to extract the variable "X"
from a MATLAB .mat file using Python and the scipy package:

import scipy.io

Load the MATLAB .mat file

mat_data = scipy.io.loadmat('your_file.mat')

Extract the variable 'X’

X = mat_data['X']

CREATE REFERENCE DATA

load('../data/X_ref.mat');
X_ref = X;
load('../data/X_nref.mat');
X_nref = X;
clear X;

disp("Loaded data. Cleaning data...")

[X, Xa] = cleanAndNormalizeOpt(X_ref, X_nref);

disp("Cleaned data. Saving data...")

% Courtesy of ChatGPT
data = struct('X', X(1:1024,:), 'Xa', Xa(1:1024,:)); %
Create a struct to hold the variables
save('reference.mat', '-struct', 'data', '-v6'); % Save the variables to
a .mat file

TEST AGAINST REFERENCE DATA

Load reference data from MATLAB/Octave

reference = scipy.io.loadmat(SCRIPT_DIR / 'reference.mat')

X_test = reference['X']

Xa_test = reference['Xa']

rows = X_test.shape[0]

assert np.array_equal(X[:rows,:], X_test), "X != X_test"

assert np.array_equal(Xa[:rows,:], Xa_test), "Xa != Xa_test"

FIX CONDITIONAL BUG

condition3 = np.logical_not(np.logical_or(condition1, condition2))

condition3 = (totRead >= 5) &

 np.logical_not(np.logical_or(condition1, condition2))

LIVE DEMOS
COPILOT

S[E]IR MODEL

RESOURCES

• GitHub Copilot
GitHub Copilot X

• ChatGPT (free w/limitations)
ChatGPT+ ($ for guaranteed access and features)

• New AI coding features are coming to Google Colab (blog.google)

• GitHub Codespaces

Presenter Notes
Presentation Notes
I do not yet have experience with Copilot X, ChatGPT+, or Google Colab AI features.

https://github.com/features/copilot
https://github.com/features/preview/copilot-x
https://openai.com/product/chatgpt
https://openai.com/blog/chatgpt-plus
https://blog.google/technology/developers/google-colab-ai-coding-features/
https://docs.github.com/en/codespaces/overview

	AI Assisted Coding
	Breakout Session Resources
	Magical but by no means infallible.
	ChatGPT v GitHub Copilot
	Scenarios
	Personal Examples
	Just for fun: FIZZBUZZ in LOLCODE
	Explain Existing Code
	Extract Code
	Optimize Code
	Hmmm…
	Test It
	Help me fix your codE...
	MATLAB to Python
	ChatGPT Assistance
	Create Reference Data
	Test Against Reference Data
	Fix Conditional Bug
	Live DemoS�COPILOT�S[E]IR Model
	Resources

