T2-PSL-v19.0

Impact of the innovative 1,7- malaria reactive communitybased testing and response (1,7-mRCTR) strategy

Victoria James Githu, **MSc** Research Scientist – Ifakara Health Institution Data Science & Mathematical Modelling Team **IDM Symposium, Seattle.** May 2023

Background

• WHO T-3 (Test-Treat-Track) initiative for malaria surveillance.

Background

- WHO T-3 (Test-Treat-Track) initiative for malaria surveillance
- China has made remarkable efforts in eliminating malaria with Its 1-3-7 model strategy in their low transmission setting (Sen et al., 2015)

Zhou et al, 2015

Background

- WHO T-3 (Test-Treat-Track) initiative for malaria surveillance
- China has made remarkable efforts in eliminating malaria with Its 1-3-7 model strategy in their low transmission setting (Sen et al., 2015).
- Tanzania explored the effectiveness and applicability of this Chinese model and incorporated 1,7 mRCTR Funded by BMGF (Mlacha et al., 2020).

Mlacha et al., 2020

T2-PSL-v19.0

Background cont...

Pilot study in Rufiji
from September
2016 – June 2018

T2-PSL-v19.0

Background cont...

- Pilot study in Rufiji
 from September
 2016 June 2018
- The effectiveness of the 1,7 mRCTR has been proved statistically by a reduction of malaria prevalence by 81% in this pilot

Mlacha et al., 2020

Impact of 1,7-mRCTR

Interrupted time series analysis (ITSA)

• The segmented regression analysis is a statistical modelling that helps us draw more formal conclusions about the impact of this strategy whether the change was due to the strategy or other factors.

Why ITSA?

• Allows to control for prior trends in the outcome and to study the dynamics of change of the strategy.

• Checks for immediate and sustained effects of the strategy.

 $Y = b_0 + b_1 T + b_2 \boldsymbol{D} + b_3 \boldsymbol{P} + \mathbf{e}$

• Where; **D** assesses the immediate effect of the strategy and

P assesses the sustained effect of the strategy

Impact of 1,7-mRCTR cont...

- Interrupted time series analysis using routine data from DHIS2
- \odot From year 2013 to 2019
- Ward with moderate transmission

WARD	Estimates	P-value
Intervention ward 1	0.8903 -34.9085 -1.3033	0.0898 0.0160 * 0.0381 *

Impact of 1,7-mRCTR cont...

 Interrupted time series analysis using routine data from DHIS2

 \odot From year 2013 to 2019

 Ward with high transmission

VARD	ESTIMATES	P-VALUE
ntervention ward 2	0.1360 -1.9140 -0.1157	0.2758 0.5741 0.4362

Causal Impact

Wards	Actual	Predicted [95%CI]	Relative effect [95%CI]	P-value
Moderate trans.				
Average	0.62	0.89 [0.65, 1.1]	-31% [-55%, -4.1%]	
Cummulative	28.36	41.16 [30.03,51.2]	-31% [-55%, -4.1%]	0.01104*
High trans.				
Average	0.16	0.19 [0.14, 0.24]	-13% [-39% , 13%]	
Cummulative	7.50	8.59 [6.38, 10.87]	-13% [-39% , 13%]	0.1636

Way Forward

- Scaling up 1,7-mRCTR approach to maximize its impact will require proper planning.
- We are proposing to adapt openMalaria to predict scenarios for successful implementation

OpenMalaria simulation platform of malaria disease progression and transmission dynamics Vectors Human hosts - Infectiousness Case management - Parasite densities Interventions - Health system Mosquito density Infectiousness Drug treatment Drugs & quality Feeding cycle Vector control Infection count Parasite development Adherence Vaccines Immunity Seasonality Compliance Drug level Entomological inoculation rate Blood stage clearance Anti-infective antimalarial drugs monoclonal antibodies vaccines Malaria infection Feeding of humans Resting Asexual Infectious blood-stage Mosquito life cycle mosquitoes immunity - ATSBs eave tubes **High parasite** Host density seeking Transmission-blocking Ovipositing vaccines Morbidity and Seeking treatment mortality - access to treatment

What OpenMalaria will help us answer

- 1. How many rounds is required to implement 1,7-mRCTR approach based on different baseline malaria prevalence?
- 2. What are the different coverages (% of the population) for 1,7-mRCTR approach implementation required to reduce malaria to total elimination? If elimination is not achieved, how much is clinical incidence reduced?
- 3. What are the best optimal malaria interventions to supplement with 1,7-mRCTR approach that can be used to reduce malaria transmission? (using OpenMalaria or VCOM)

Thank you

Acknowledgement

- o Dr Samson Kiware
- Dr Nakul Chitnis
- Dr Yeromin Mlacha
- Dr Prosper Chaki

