Improving the effectiveness of water, sanitation, and hygiene interventions A simulation approach to generalizing the outcomes of intervention trials

Andrew Brouwer University of Michigan May 23, 2023

ROLLINS SCHOOL OF PUBLIC HEALTH BILL& MELINDA GATES foundation

Efficacy	The interventions don't work

Efficacy	The interventions don't work			
Adherence & fidelity	People aren't receiving or using the interventions			

Efficacy	The interventions don't work			
Adherence & fidelity	People aren't receiving or using the interventions			
Community coverage	Transmission pressure from people not in the study			

Efficacy	The interventions don't work
Adherence & fidelity	People aren't receiving or using the interventions
Community coverage	Transmission pressure from people not in the study
Completeness	Transmission through routes that are not intervened on

Magnitude of transmission pathways

\M/ater	Hands &	All other
vacci	Fomites	Another

Efficacy	The interventions don't work
Adherence & fidelity	People aren't receiving or using the interventions
Community coverage	Transmission pressure from people not in the study
Completeness	Transmission through routes that are not intervened on
Baseline WASH conditions	Interventions are not a meaningful improvement

Efficacy	The interventions don't work
Adherence & fidelity	People aren't receiving or using the interventions
Community coverage	Transmission pressure from people not in the study
Completeness	Transmission through routes that are not intervened on
Baseline WASH conditions	Interventions are not a meaningful improvement
Baseline disease conditions	There is too little/too much disease

Mechanistic transmission modeling can evaluate these explanations.

Step 1. Develop a mechanistic model **Step 2.** Calibrate the model to real trial data Step 3. Estimate what the trial results would have been in an alternate scenario

Our transmission model accounts for people not using interventions...

... a shared environment ...

... and multiple transmission pathways.

We also need to account for adherence/fidelity and baseline WASH conditions.

Model parameters determine estimated prevalence.

Community coverage	Fraction of the population that is in the study				
Magnitude of transmission pathways (R ₀)	Water Hands & fomites Other				
Efficacy of interventions	Water – chlorination reduces transmission from water pathway Sanitation – latrine water seal reduces shedding into water pathway Hygiene – handwashing reduces transmission from fomite pathway				

Calibration - sample parameter sets and see if they fit the data.

Test a large number of parameter combinations...

... only keep the ones that fit well

What kinds of results do we generate?

Comparison of simulation and data

Parameter uncertainty (posterior distributions)

Counterfactuals: what would we have observed if ... ?

The model successfully captures diarrheal prevalence in the trial.

Counterfactual	Intervention effectiveness			
	Water	Sanitation	Hygiene	WSH
Original scenario	8%	36%	33%	30%
Doubled chlorine efficacy				
Doubled latrine efficacy				
Doubled handwashing efficacy				
Had full adherence				
Increased coverage to 20%				
Had no baseline WASH conditions				
Doubled baseline prevalence				

Counterfactual	Intervention effectiveness			
	Water	Sanitation	Hygiene	WSH
Original scenario	8%	36%	33%	30%
Doubled chlorine efficacy	+7%	+0%	+0%	+6%
Doubled latrine efficacy	+0%	+17%	+0%	+15%
Doubled handwashing efficacy	+0%	+0%	+20%	+20%
Had full adherence				
Increased coverage to 20%				
Had no baseline WASH conditions				
Doubled baseline prevalence				

Counterfactual	Intervention effectiveness			
	Water	Sanitation	Hygiene	WSH
Original scenario	8%	36%	33%	30%
Doubled chlorine efficacy	+7%	+0%	+0%	+6%
Doubled latrine efficacy	+0%	+17%	+0%	+15%
Doubled handwashing efficacy	+0%	+0%	+20%	+20%
Had full adherence	+4%	+0%	+1%	+4%
Increased coverage to 20%				
Had no baseline WASH conditions				
Doubled baseline prevalence				

Counterfactual	Intervention effectiveness			
	Water	Sanitation	Hygiene	WSH
Original scenario	8%	36%	33%	30%
Doubled chlorine efficacy	+7%	+0%	+0%	+6%
Doubled latrine efficacy	+0%	+17%	+0%	+15%
Doubled handwashing efficacy	+0%	+0%	+20%	+20%
Had full adherence	+4%	+0%	+1%	+4%
Increased coverage to 20%	+13%	+6%	+8%	+30%
Had no baseline WASH conditions				
Doubled baseline prevalence				

Counterfactual	Intervention effectiveness				
	Water	Sanitation	Hygiene	WSH	
Original scenario	8%	36%	33%	30%	
Doubled chlorine efficacy	+7%	+0%	+0%	+6%	
Doubled latrine efficacy	+0%	+17%	+0%	+15%	
Doubled handwashing efficacy	+0%	+0%	+20%	+20%	
Had full adherence	+4%	+0%	+1%	+4%	
Increased coverage to 20%	+13%	+6%	+8%	+30%	
Had no baseline WASH conditions	-0%	-14%	-8%	-9%	
Doubled baseline prevalence					

Counterfactual	Intervention effectiveness				
	Water	Sanitation	Hygiene	WSH	
Original scenario	8%	36%	33%	30%	
Doubled chlorine efficacy	+7%	+0%	+0%	+6%	
Doubled latrine efficacy	+0%	+17%	+0%	+15%	
Doubled handwashing efficacy	+0%	+0%	+20%	+20%	
Had full adherence	+4%	+0%	+1%	+4%	
Increased coverage to 20%	+13%	+6%	+8%	+30%	
Had no baseline WASH conditions	-0%	-14%	-8%	-9%	
Doubled baseline prevalence	-2%	-21%	-17%	-12%	

What about completeness?

Magnitude of transmission pathways

Consider the impact of increasing coverage

Completeness is an effect modifier

Summary

- Coverage is essential interventions have little individual-level effectiveness if there is disease pressure from people not covered by interventions.
- Completeness is an important modifier of the impact of coverage on intervention effectiveness.
- Efficacy and adherence/fidelity have limits to their impact.
- Easier to have an effect when the system is already closer to elimination (baseline WASH conditions and baseline disease conditions).

Conclusion

Investments in interventions should be addressed in this order.

- **1.** *Completeness*. Without completeness, addressing the other factors will have little impact. The relevance of food, animal, etc. pathways needs to be better understood.
- 2. Coverage. If interventions are complete, increasing coverage can dramatically impact outcomes.
- **3.** *Efficacy, fidelity, and adherence*. These factors will have little impact without first addressing completeness and coverage.

Take-aways

Transmission models can generalize trial relative risks to other contexts

- Incorporate models into trial design
- Use models to choose programmatic targets for local contexts

Our results support

- Community-level interventions seeking to achieve herd protection
- Evaluation of strength of transmission pathways (including those not traditionally covered by WASH)

Shiny App coming soon!

Coverage fraction

 Estimate intervention effectiveness for a specific set of baseline conditions and intervention parameters

1.00 -0.75 -0.50 -

0.25

Baseline

 Explore sensitivity to parameters to determine how to achieve disease reduction goals

Acknowledgments

Core Team

- Joe Eisenberg
- Matthew Freeman
- Marisa Eisenberg
- Mondal Zahid
- Savannah Boerger
- Kevin Bakker

Collaborators

- Benjamin Arnold
- Sania Ashraf
- Jade Benjamin-Chung
- John Colford, Jr
- Ayse Ercumen

FS foundation

BILL& MELINDA

- Stephen Luby
- Amy Pickering
- Claire Null
- Mahbubur Rahman

EMORY EMORY BUBLIC HEALTH ROLLINS SCHOOL OF PUBLIC HEALTH

Funded by