Estimating immunity to wild poliovirus type 1 in South Africa

Jeremy Bingham

&

SACEMA's Modelling and Analysis Response Team 2023-05-23

Overview

- 1. Context & Aim
- 2. Data sources
- 3. Overall workflow
- 4. Estimation of immunity pre-2009
- 5. Results and Discussion

SACEMA's Modelling and Analysis Response Team:

Jeremy Bingham, **Lauren Brown**, Zinhle Mthombothi, Tumelo Sereo, Cari van Schalkwyk, James Azam (former), Juliet Pulliam

Model structure

Gut (mucosal) and humoral immunity

Age classes are represented by (i)

Aim

- Estimate levels of gut and humoral immunity to WPV1 at the district level, in five-year age bands
- Provide initial conditions to SACEMA's poliovirus transmission model
- Help motivate for and inform public health interventions such as catchup campaigns

Vaccination for wild poliovirus type 1

Vaccination schedule			
Age of child	Vaccine type		
At birth	OPV 0		
6 weeks	OPV 1		
	IPV 1	a start	
10 weeks	IPV 2		and the file and the
14 weeks	IPV 3	IPV	OPV
18 months	IPV 4		
		Humoral	Gut (mucosal)

Image source: Bing image generator

Data Sources

NDoH: IPV1-4 and OPV0-1 doses at district-level 2009 – July 2022; missing some years

WCDoH: birth-dose BCG and IPV1 at facility-level in WC 2009 – July 2022

Schoub et al. 1998: 1995 nationally representative seroprevalence survey of 12 - 35 month old children (province-level)

Statistics South Africa: district-level live births 1998-2020

Thembisa model: population size estimates per province, per age

Overall workflow

Vaccination & population data

District-level immunity estimates

Bootstrap for missing doses

Data from NDoH was incomplete; e.g.,

• All provinces: no OPV0 data for 2009-2019

Compute ratios of OPV0 / OPV1 doses administered for years with complete data

For each missing data, sample a ratio

Multiply ratio by number of OPV1 doses to get number of OPV0 doses

Putting the pieces together

- Assume fixed per-dose efficacy for bOPV and tOPV
- Specify independently 1-2-3- and 4-dose efficacy for IPV
- Calculate number of children with gut and humoral immunity per birth year
- Calculate proportion immune per age group (0-4, 5-9, etc.)
- Calculate proportion immune for humoral immunity only:
 - prop_hum * (1-prop_gut)

Estimating immunity prior to 2009

Results

Age-structured immunity estimates

Proportion of under-5's with gut or humoral immunity to WPV1

Proportion of under-15's with gut or humoral immunity to WPV1

Discussion

- Concerning risk for widespread AFP
- 10-24 year olds at highest risk
- Younger children mostly protected but gap in gut immunity could amplify an outbreak
- Wider age range should be considered for catchup campaigns

Limitations

- Missing data
 - Routine vaccination pre-2009
 - Catchup campaigns
- Live births
- Efficacy assumptions
- Assume doses administered < live births

Limitations

- Missing data
 - Routine vaccination pre-2009
 - Catchup campaigns
- Live births
- Efficacy assumptions
- Assume doses administered < live births

Limitations

- Missing data
 - Routine vaccination pre-2009
 - Catchup campaigns
- Live births
- Efficacy assumptions
- Assume doses administered < live births

Next steps

- Incorporating data on catchup campaigns
- Improving live births estimates
- Validation on intermediate results
 - Zero-dose babies
 - WHO/UNICEF estimates of national immunization coverage
- cVDPV2

Acknowledgements

- SACEMA/NICD Polio Working Group: Kerrigan McCarthy, Anne von Gottberg, Mercy Kamupira, Ijeoma Edoka, Chenoa Sankar
- Ari Voorman, Hil Lyons, Kathleen O'Reilly
- Jeff Eaton, Leigh Johnson, Rob Dorrington
- Johann van den Heever
- Yuri Munsamy
- Western Cape Department of Health
- National Department of Health
- Bill & Melinda Gates Foundation
- SACEMA operations team

CEMA's Modelling & Analytics Response Team

Department: Health REPUBLIC OF SOUTH AFRICA

Western Cape Government

YOU

Health

health

Division of the National Health Laboratory Service

Jeremy Bingham jeremyb@sun.ac.za

SACEMA's Modelling and Analysis Response Team:

Jeremy Bingham, **Lauren Brown**, Zinhle Mthombothi, Tumelo Sereo, Cari van Schalkwyk, James Azam (former), Juliet Pulliam

Number of doses administered or bootstrapped for JHB

Total national live births by source

Source

- StatsSA_districtlevel
- StatsSA_national

Source

- NDOH
- StatsSA

Estimating immunity given dose distribution

- Assume fixed per-dose efficacy for bOPV and tOPV
- Specify independently 1- 2- 3- and 4-dose efficacy for IPV
- Compute number immune based on annual doses given
- Divide by annual live births to get proportion immune
- Use province-level population size estimates to combine birth years into age groups