# Outbreak risks, cases, and costs of different vaccination strategies against wild poliomyelitis

# Short title: how we used simple models to inform economic decision-making

Megan Auzenbergs, Kaja Abbas, Arie Voorman, Corey Peak, Mark Jit, Kath O'Reilly

BMGF OPP1191821 // INV-049298



### Broader context of study & relevance for health policy



- We focus on the challenge of polio supplementary immunization activities (SIAs) in non-endemic countries, given a fixed (limited) budget
  - **Context**: wild poliovirus serotype 1 (WPV1) in AFRO
  - Current status of pSIAs: average number of preventative SIAs (pSIAs) have declined in recent years and some countries have not conducted a pSIA in over a decade...
  - Explore corresponding costs and trade-offs
    - Global Polio Eradication Initiative (GPEI) perspective (future funding and programmatic needs)
    - Non-GPEI perspective (including health system perspective)
    - Global perspective (eradication goals)

# Model assumptions and parameters



- Extended SIR model, stochastic simulations to allow for variability
  - Account for differential immunity with dose exposure (i.e. not all or nothing for vaccination)
  - RI includes both bOPV and IPV
  - Allow for importations of infection
  - Case to infection ratio (WPV 1:200)
  - Ro = 3, so, herd immunity threshold is ~ 67%
- 5-year time horizon to align with GPEI strategic plan
- Model a "hypothetical" population for an LMIC country in Africa (~8 Million children <5 years of age)
- Model outputs for each vaccination strategy:
  - Expected cases of paralytic polio
  - Disability adjusted life-years (DALYs)
  - Number of outbreaks
  - Probability no outbreaks occur
  - Adverse events of vaccination (vaccine associated paralytic polio, VAPP)



3 Vaccination strategies –outbreak is defined as ≥1 case of paralytic polio

- RI + oSIAs: vaccination via RI, no preventative SIAs, only outbreak response in simulations with ≥1 case \*\* baseline comparator \*\*
- 2. Annual pSIAs: RI + annual preventative campaigns in all simulations
- 3. Biannual pSIAs: RI + biannual preventative campaigns in all simulations







# Cost data and assumptions



#### **Economic assumptions:**

- SIA cost data from GPEI (operational, procurement, social mobilization)
- oSIAs are more expensive than pSIAs
- Cost and DALYs per paralytic poliomyelitis case = VAPP case
- Who pays for what?
  - Health system (non-GPEI) costs =
    - bOPV via RI + cases + VAPP
  - GPEI costs =
    - SIAs + IPV via RI

#### Total costs over 5 years

Size of the circles is proportion to the number of expected AFP cases Solid points indicate >80% probability of no outbreak



Vaccination strategy

- oSIAs
- Annual pSIAs
- Biannual pSIAs

From GPEI perspective, in comparison to oSIAs alone (baseline comparator)...

#### Low RI

#### DALYs averted Annual pSIAs >> Biannual pSIAs

#### **Cost per DALY averted** Annual pSIAs cost-effective



DALYs averted Annual pSIAs = Biannual pSIAs

Cost per DALY averted Annual pSIAs >>> Biannual pSIAs Biannual pSIAs cost-effective





| RI coverage | Implications for decision making                                                          |
|-------------|-------------------------------------------------------------------------------------------|
| <50%        | pSIA removal would have high risks and<br>consequences                                    |
| 50-70%      | Removal of pSIAs altogether could lead to a high risk<br>of outbreaks in subsequent years |
| 80-90%      | Reducing the frequency of pSIAs could still maintain<br>a low risk of large outbreaks     |
| 100%        | Even if pSIAs are removed, there is low to no risk of outbreaks                           |

# Pros and cons of using a simple model



- Assumptions made:
  - Homogenous mixing
  - SIAs reach 25% of children missed by RI
  - Use a simple single value for R<sub>0</sub> alongside other parameters
- We do not consider the costs of further delaying the eradication timeline
- By limiting our analysis to a 5-year time horizon, we underestimate the benefits of pSIAs as they will increase the likelihood of eradication

- Model is implemented using R package SimInf
  - Easy to code
  - Easy to manipulate parameters
  - Can be used across wide range of settings
- Simple model with clear cost inputs and outputs is easy to communicate
- Model clearly shows risks and benefits of different vaccination strategies and can be used to inform imminent policy and funding decisions

#### THANKYOU

Questions, comments & feedback: Megan.Auzenbergs@lshtm.ac.uk

- 1. What experiences do you have using models to answer economic or financial needs?
- 2. What experiences do you have using models in interdisciplinary research?





Not included in main talk- these figures are additional outputs from the model described in this presentation (cut from presentation for time sake, left here hidden at the end in case of questions)

#### Routine immunisation (RI) coverage & historical preventative SIAs (pSIAs)









