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• Outcome : demand satisfied with modern methods 
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• Approach: Bayesian hierarchical sparse regression model 

• Joint work with Jadey Wu, Zhengfan Wang, and Chuchu Wei (UMass Amherst)
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Parameters:

• Regional intercepts  and regression parameters  are estimated 

hierarchically/with spatial structure 


• Regression coefficients for main effects  and interaction 

terms  and  are estimated using a RW1 set-up: 


• Re-parametrize to sum to zero  and define 


• To encourage shrinkage of irrelevant 1st order differences, we use 
horseshoe priors (Piironen et al., 2017), e.g., 


• Subgroup effect  captures unexplained variability across groups 
and is estimated hierarchically, i.e. 
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subgroups that are not explained 
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• Goal: For some population group , estimate group-specific FP outcome g μg

• Example used: 

• Estimates for married women in Nigeria in 2018, using DHS data 

• Outcome : demand satisfied with modern methods 

• Subgroups  are defined by cross-tabulations of covariates  of interest: geographical region - age - 
parity - wealth - education - urban/rural classifications 

μg

g

• Approach: Bayesian hierarchical sparse regression model 

• Assess differentials based on unique combinations of covariates 

• Data model: account for the survey design and across-cluster variability 

• Computation: 

• Hamilton Monte Carlo, using Stan/Brms package in R 

• ~5 - 10 minutes to fit model to Nigeria 2018 DHS data
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What do the model-based estimates show?

Interaction effects for 
 being in “richer” group & age:  

Among the richer women, younger age groups 
have lower-than-expected demand satisfied

Main effects for age: 
Demand satisfied increases with age

1. We find substantive differences between subgroups

2. Differences would be masked if considering just one or a few dimensions 

8



What do the model-based estimates show? (Ctd)
1. We find substantive differences between subgroups 

2. Differences would be masked if considering just one or a few dimensions 

9



What do the model-based estimates show? (Ctd)
1. We find substantive differences between subgroups 

2. Differences would be masked if considering just one or a few dimensions 

9

Demand satisfied for Federal Capital Territory,  
for women in richer subgroups, <35 years old



What’s next – using model-based estimates

10



What’s next – using model-based estimates
1. Use findings (average differentials, subgroup estimates) to 

help target interventions  

• In parallel work: re-evaluate the impact of interventions 
using modern methods for causal inference and consider 
if subgroup characteristics act as effect modifiers 

10



What’s next – using model-based estimates
1. Use findings (average differentials, subgroup estimates) to 

help target interventions  

• In parallel work: re-evaluate the impact of interventions 
using modern methods for causal inference and consider 
if subgroup characteristics act as effect modifiers 

2. Consider summary measures, taking account of subgroup 
population size and uncertainty, to evaluate process in 
improving equity 

10



What’s next – using model-based estimates
1. Use findings (average differentials, subgroup estimates) to 

help target interventions  

• In parallel work: re-evaluate the impact of interventions 
using modern methods for causal inference and consider 
if subgroup characteristics act as effect modifiers 

2. Consider summary measures, taking account of subgroup 
population size and uncertainty, to evaluate process in 
improving equity 

3. Consider other outcomes of interest 

• Build off recent work to define alternative measures of FP 

• E.g., better account for sexual activity, different 
definitions of demand and unmet need, … 
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• In the short term, consider building a “midfield” with

• In-country applied data scientists/modelers 

• Tools that enable advanced usage: Advanced user-
specified settings  Modifiable software ⇒

• FP is well-placed for this next step:

• Actors: Track20 project with local M&E officers; 
Countdown’s in-country FP initiative; FP2030 
regional hubs; Active international FP measurement 
community; … 

• Tools: Open-source software tools and training 
material (e.g., R packages for data processing and 
model fitting; webinars); we are finalizing FPET-
related tools that allow for advanced usage. 
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Measuring inequity in family planning:  
Towards locally relevant monitoring by local actors

• Existing estimates may mask variation in groups defined by different combinations of 
demographic characteristics.  

• We developed a Bayesian hierarchical sparse regression model to produce subgroup 
estimates. Model-based estimates reveal inequities and can be used to target 
interventions. 

• Consider building a midfield to further increase local FP modeling capacity? 

13Contact: Leontine Alkema (lalkema@umass.edu, leontinealkema.github.io/alkema_lab/)
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