2023 IDM Annual Symposium

Investigating the Impact of Irrigation on Malaria Vector Larval Habitats and Transmission using a Hydrology-based Model

Ai-Ling Jiang¹, Ming-Chieh Lee², Guiyun Yan², Kuolin Hsu¹

- 1. Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering University of California, Irvine, CA, USA
- 2. Department of Population Health and Disease Prevention, School of Public Health, Susan & Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA

Expanding irrigation could exacerbate malaria transmission in Africa

Gebul et al., 2021

Malaria models typically oversimplify hydrology when simulating larval habitat dynamics

Habitats in the Field

 Habitat area simulated conceptually and highly dependent on parameter calibration

 $H^{t} = H^{t-1} + P_{rain}{}^{t} \lambda D_{cell}^{2} - H_{t-1} \tau \Delta t \quad (1)$ $H^t = \lambda D_{cell}^2 = constant$ (2)

 P_{rain}^{t} : Rainfall; Scale factor for habitat area: D_{cell}^2 : Node Area; **Decay Rate** Eckhoff, 2011

- Habitat area simulated explicitly based on physics
 - $H_t = F_t D_{cell}^2$
 - Fractional area of habitat simulated by ParFlow CLM within node ;

 D_{cell}^2 : Node area;

(1): Equation of temporary or semi-permanent habitat in Default EMOD (2): Equation of permanent habitat in Default EMOD 3

ParFlow-CLM was integrated with EMOD to improve habitat representation

Step 1: Habitat Identification

Step 2: Hydrology-integrated EMOD

Jiang et al., 2021

Study area: sugarcane plantation in Arjo-Didessa, Ethiopia

- Domain: 208 km²; Depth:100 m
- Resolution: dx = dy = 50 m; varying dz
- 10 Subsurface layers

- Simulation period: 2000-2020
- Scenarios modeled:
 - Non-Irrigation
 - Default EMOD
 - Integrated EMOD
 - Irrigation (starting from 2012)
- Rotating irrigation applied during dry months

Default EMOD unable to fully represent habitat area variability

Assumption: Mean habitat area of Default EMOD and Integrated EMOD were adjusted to be same

- Default EMOD had higher lows
 - Constant permanent habitat area
 - Infiltration mechanism missing for temporary and semi-permanent habitats

Higher variability of habitat area results in lower transmission

- Annual average habitat capacity and vector abundance were nearly identical
- But average vector infection rate was 2.9 times higher and average prevalence rate was 2.5 time higher in Default EMOD due to lower habitat area variability

Model captures response of surface soil saturation to rainfall and irrigation

Irrigation sustained transmission all year round and shifted peak forward by one month

Dry Season

Rainy Season

Larval Habitat

Adult Vector

Conclusion

- We <u>integrated hydrologic modeling</u> to EMOD to spatially simulate malaria transmission by resolving habitat heterogeneity
- The coupling framework <u>enhanced larval habitat area variability</u> which resulted in a <u>lower</u> malaria transmission prediction
- Irrigation sustained malaria transmission <u>year-round</u>, <u>intensifying</u> and <u>shifting</u> the transmission peak <u>forward</u> by one month from the original period

References

- Gebul, M. A. (2021). Trend, status, and challenges of irrigation development in Ethiopia—A review. Sustainability, 13(10), 5646. https://doi.org/10.3390/su13105646
- Eckhoff, P. A. (2011). A malaria transmission-directed model of mosquito life cycle and ecology. Malaria journal, 10(1), 1-17. https://doi.org/10.1186/1475-2875-10-303
- Jiang, A.L., Lee, M.C., Zhou, G. et al. (2021). Predicting distribution of malaria vector larval habitats in Ethiopia by integrating distributed hydrologic modeling with remotely sensed data. Scientific Reports 11, 10150. https://doi.org/10.1038/s41598-021-89576-8

Acknowledgment

- This work was supported by
 - Center of Hydrometeorology and Remote Sensing, University of California Irvine
 - School of Public Health, University of California Irvine
 - National Institutes of Health (U19 AI129326)
 - U.S. Department of Energy (HydroWIRES Initiative DE-EE0008943)
 - California Department of Water Resources (AR Program 4600013361)

National Institutes of Health Turning Discovery Into Health

WATER RESOURCES

• Special thanks to Dr. Teshome Degefa, Hallelujah Getachew, Hailu Merga, Dr. Delenasaw Yewhalaw for their help on data collection in Ethiopia

Stay tuned and thank you for your attention!

Contact: jiangal@uci.edu