

INCORPORATING CALIBRATED CAUSE-SPECIFIC MORTALITY FROM VERBAL AUTOPSIES IN CAUSE OF DEATH ESTIMATION

Jamie Perin on behalf of CA-CODE

CA-CODE Objectives : Estimate causes of mortality for children and adolescents

Age-specific mortality

- a. Neonates
- b. Under five years
- c. 5-9 both sexes
- d. 10-14 both sexes
- e. 15-19 females
- f. 15-19 males

CA-CODE Objectives

Sources of causes of death and covariates

Methods for high mortality areas

- Systematic review of cause-specific mortality in high mortality settings
- Multinomial regression in Bayesian framework: Covariates systematically prioritized (selected) in using the LASSO (Least Absolute Shrinkage and Selection Operator)
- Cross-validation
- Areas with nationally representative studies have more influence in their estimates (random effects)

Weakness in methods for high mortality areas

- Verbal autopsy
 - Known limitations

Verbal Autopsy to Cause of death to cause specific mortality fraction

Can we trust these estimates?

Collaborators And Funding

JHU, Biostatistics

Jacob Fiksel Brian Gilbert (former PhD students of Ahbi Datta)

Sandipan Pramanik (Postdoctoral fellow)

Abhi Datta

TE

Bob Black

Agbessi Amouzou Emily Wilson Henry Kalter

(JHU, International Health)

ack L (J

Li Liu (JHU, PFRH)

Dianna Blau Ivalda Macicame (CHAMPS) (INS Mozambique)

Funding (Bill and Melinda Gates Foundation):

COMSA-Mz: Countrywide Mortality Surveillance for Action in Mozambique

MITS-VA: Broadening minimally-invasive-tissue-sampling (MITS)-based verbal autopsy (VA) calibration to improve global mortality estimates (PI: Datta)

Minimally Invasive Tissue Sampling (MITS)

Data from CHAMPS project with both VA-COD and a minimally invasive tissue sampling (MITS)-COD

MITS-COD assignments been shown to be reasonably accurate when compared to the full diagnostic autopsies (Bassat et al. 2017)

CHAMPS data can be used to create a paired VA-MITS dataset to understand the accuracy of VA

MITS-VA Misclassification rates matrix

Cause of death misclassification by VA compared to MITS

Misclassification rates of VA for neonates in COMSA-Mozambique

Misclassification rates of VA for under-5 children in COMSA-Mozambique

This paired data reveals that VA misclassifies COD in a large % of deaths This occurs for all age groups and choice of CCVA algorithm

Estimating model parameters, incorporating measurement error of verbal autopsy

$$\begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix}_{\mathcal{S}} = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\ M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\ M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \\ M_{4,1} & M_{4,2} & M_{4,3} & M_{4,4} \end{bmatrix} * \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}_{\mathcal{S}}$$

$$\begin{bmatrix} \log(P_1/P_1) \\ \log(P_2/P_1) \\ \log(P_3/P_1) \\ \log(P_4/P_1) \end{bmatrix}_{S} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} & \beta_{2,4} & \beta_{2,5} \\ \beta_{3,1} & \beta_{3,2} & \beta_{3,3} & \beta_{3,4} & \beta_{2,5} \\ \beta_{4,1} & \beta_{4,2} & \beta_{4,3} & \beta_{4,4} & \beta_{2,5} \end{bmatrix} * \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}_{S}$$

Estimating model parameters, incorporating measurement error of verbal autopsy

- Misclassification matrix integrated with Bayesian model
 - Advantages: uncertainty, elegance
 - Disadvantages: transparency, incorporating separate algorithms
- Alternative to model integration of verbal autopsy error/misclassification: pre-processing
 - Advantages: transparency
 - Disadvantages: uncertainty

Uncalibrated vs. Calibrated CSMF Estimates in Moz (<1 Month)

Uncalibrated vs. Calibrated CSMF Estimates in Moz (1–5 Yrs.)

CA CDE

Results

Impact of correcting verbal autopsy error on model parameter estimates

Impact of correcting verbal autopsy error on model parameter estimates

Impact of correcting verbal autopsy error on estimates of cause specific mortality

CA CDE

Impact of correcting verbal autopsy error on estimates of cause specific mortality

In Summary

- Some country estimates are impacted by correcting the biases from verbal autopsies, especially those with large national surveys
- Cause specific estimates improve when correcting for VA biases and increase confidence
- Uncertainty has still to be worked out

THANK YOU FOR YOUR ATTENTION!

jperin@jhu.edu

