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Rationale

In low- and middle-income countries, the persistently high maternal mortality ratio
(MMR) remains a significant concern, representing tragic losses of both mothers and
infants. Many of these deaths result from preventable complications
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For example,

No

Complication

Prevention/Management

1
2

Hemorrhage

Hypertensive Disorders (Preeclampsia/Eclampsia) -
Preeclampsia is a condition characterized by high blood
pressure and damage to other organs, often the liver and
kidneys. If untreated, it can develop into eclampsia, leading
to seizures, coma, and death

Regular antenatal care, monitoring blood
pressure, and early use of medications like
magnesium sulfate during delivery can
prevent severe outcomes
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= Joined MoH initiative and deployed Unified Community :
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System (UCS) for data capturing at facility -

2ER =
S

3. Capture the data

< Return to All Clients

1213 P E & © % Z: 0 55% =

& Returnto All  Registration info

Jamila Selemani Munisi, 22
Location info

Gestation Age : 28 weeks - Jh - ID: 5756903

Pregnancy confirmation

Ministry of Health i _
. . Female - 1 egistration Record ANC Followup Visit
Kituoni App
App Version: 1.1.12 (built on 14 Jun 2023) PNC Registration
OPENSRP i 2. View registration details —
[ } PMTCT Registration
- Last visit 49 days ago

[ } L&D Registration E] View medical history .

[] show Password

Remove this person Register Partner o
LOG IN Record Partner details
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What did we get?

= Data & Collaborations

1 UCS Dashboards
Dashboards
SEARCH OWNER
=B -
STATUS FAVORITE
Title Modified by Status

vr UCS Services Dashboard Admin User Published
¥y Data Export Admin User Published
¢ DataExport PHIT llakoze Jumanne Draft
¥ UCS Usage Dashboard llakoze Jumanne Published

CREATED BY

CERTIFIED

Modified -

25 days ago

a month ago

3 months ago

4 months ago

Settings

BULK SELECT + DASHBOARD R

Created by

Admin User

Admin User

public Health-i

Admin User

A total of 337,027 ANC Visits have been

recorded

Multiple visits (longitudinal/repeated
observations)

Visits ranges from 2020 to 2024

Majority with single visit

r Freqg. Percent Cum.
1 182,313 54.09 54.09
2 le4,886 31.1z2 85.22
3 33,487 9.94 95.15
4 11,606 3.44 98.60
5 3,494 1.04 99.63
& 915 0.27 99.90
7 202 0.06 99.96
8 49 9.01 99.98
9 17 9.01 99.98
10 3 e.00 99.98
11 1 e.00 99.98
99 54 0.02 lee.00
337,027 lee.080
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A total of 337,027 ANC Visits have been
recorded

Multiple visits (longitudinal/repeated
observations)

Visits ranges from 2020 to 2024

Majority with single visit

Average gestational age = 24W with about
80,000 cumulative visits
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What did we get?

= Data Quality

© datal.notnull().sum()/len(datal)*100

Good, but not very useful

client_id 160.000000
g::f age 133'332322 — » Good for management purposes
blood_for glucose 23.940218 . .

- - - —_— © counts = datal['protein_in_urine'].value_counts(dropna = False)
glucn?'e—];"-u ”"ne 70.199420 percs = datall'protein_in_urine'].value_counts(dropna = False, \
protein_in_urine 78.198827 Good normalize=True).mul(100@).round(1).astype(str) + 's'
blood_group 57.584704 but dI’g deeper pd.concat( [counts,percs], axis=1, keys=['count', 'percentage'])
syphilis 55.499411
rh_factor 27.805487 | T T TTTT 7 > = count percentage [
visit_number 100.000000
hE_‘Lgh? 99.923745 negative 173065 51.4% m
weight 50.419463 NaN 100438 29.8%
bmi 50.418216 .
s?itnlie o0 410106 —] Key variables test_not_conducted 62799 18.6%
diastolic 50.419403 * positive 725 0.2%
temperature 50.419106 —
fundal_height 37.124919
fetal_heart_rate 37.123139

dtype: floated
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ML Model

Predictors definition

‘: # Collapse: Change data from longitudinal to cross-section
data2
data3
data4d

data2.replace(' [null]', np.nan)
data3.groupby('client_id',as_index = False
) .agg(

{
'ganc':'last’,
'gest_age': 'max’',
'glucose_in_urine':'last’,
'protein_in_urine':'last’,

'blood_group':'last’, 'syphilis': 'last’,

'visit_number':'last’,

'blood_for_glucose': 'mean',

'height': 'mean’,

'weight': 'mean’,

'bmi': 'mean’,

'systolic': 'mean’,

'diastolic':"mean’,

'temperature’: 'mean’

}
)

print('The shape of data before collapsing:', data2.shape)
print('The shape of data after collapsing:', datad.shape)
print('Maximum number of wvisit per client:')
data4['visit_number'].value_counts().sort_index(ascending=True)

datal.sort_values(['client_id', 'visit_number'],ascending = [False, Truel)

I

The shape of data before collapsing: (337027, 18)
The shape of data after collapsing: |(187438, 15)
Maximum number of wvisit per client: L

80773

72448

22368

8247

2609

732

157

33

14

(% 2

11 1

99 54
Name: visit_number, dtype: int64

D00~ U1 B LD R




ML Model

Outcome definition

Hypertensive Disorders During Pregnancy =» Sys >= 140 | Dia. >= 90

"~ inaiset
Data with outcome condition (Risk) 1,894 1,894 379
Data without outcome condition (No Risk) 48,680 1,894 3409
Total 50,574 3,788 3,788

Balance 10% Test / 90% Train

10 Cross Validation Scores
M| —

]

0.8 KNN: 97.07% 1.0
S 06 LR: 93.78% -
$oa SVM: 93.72%
02 _RF:99.74 _ _ _ £

s 3 % & g 'XGB:99.94 | > Train 90%

Test 10% —> Predicted label
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Model Use Cases - New dataset (N=120,232)

Detect Risk of HDDP using arithmetic methods
(Sys. BP >= 140, Dia. Bp >= 90)
Results

- => Risk HDDP = 1,725,

- > No Risk HDDP = 118,507
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Model Use Cases - New dataset (N=120,232)

Detect Risk of HDDP using arithmetic methods Predict Risk of HDDP using XGB Trained

(Sys. BP >= 140, Dia. Bp >= 90) Model
Results Results
- =>» Risk HDDP = 1,725, - => Risk of HDDP = 12,603,
- =2 No Risk of HDDP = 118,507 - =2 No Risk of HDDP = 107,629

——————————————————————————————————————————————————————————————————————————————————————————————————————————————

i' Key Discovery
i =» The model over detected 10,878 records (12,603 — 1,725) - predictability

=>» These 10,878 would not have been captured using convertional routine procedures

-




Model Use Cases - New dataset (N=120,232)

Detect Risk of HDDP using arithmetic methods Predict Risk of HDDP using XGB Trained

(Sys. BP >= 140, Dia. Bp >= 90) Model
Results Results
- => Risk HDDP = 1,725, - = Risk of HDDP = 12,603,
- =2 No Risk of HDDP = 118,507 - =2 No Risk of HDDP = 107,629

Prediction accuracy: 90.95%
Classification report :
precision recall fl-score support

No Risk . . 0.95 118507
Risk exist . . 0.24 1725

accuracy 0.91 120232
macro avg . . 0.60 120232
weighted avg . . 0.94 120232
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Model Deploymen

https://ai.phit.or.tz

@ Prime Health Initiative Tanzania (PHIT)

MLINDE Mama Prediction Model

MLINDE Mama (Mmama) Prediction Model is a Machine Learning (ML) model to predict adverse maternal outcomes using data from antenatal care visits. This
model has been developed as part of the MLINDE Mama Project at the Prime Health Initiative Tanzania (PHIT) under BMGF award [add more content]

Click here to learn more about the model. Click here to learn more about the PHIT

Interact directly with the API using example code below

Individual Prediction

systolic diastolic

120

protein in urine blood for glucose
0 5.7

bmi
24.44

Predict

prediction results

gestational Age

temperature

37

Input a CSV File

Input a csv file with the following columns

Download sample file here

Choose File  No file chosen

predict

(]
€
E
£
£
]
2
2
s

No matching records found

systolic
diastolic
gest age

temperature

blood for gluc

prediction

Service Oriented Architecture, (SOA)

can be consumed by general public
can be consumed by experts through

CSV Upload
APl Integration
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What Next?

= Model Validation with an active follow up
= Model fine-tuning
= Model application in routine services
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Features importance

Feature Importance
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