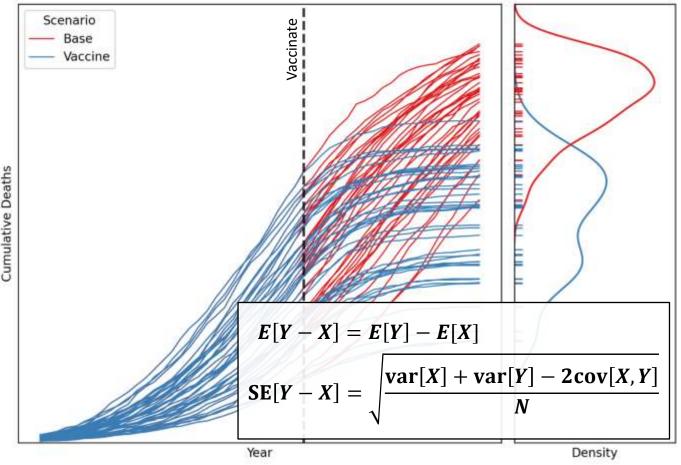


Noise-free comparison of stochastic agent-based simulations using common random numbers

Dan Klein, Romesh Abeysuriya, Robyn Stuart, and Cliff Kerr

How many deaths are averted by a vaccine?

What causes differences between base and vaccine simulations?


- 1. Mechanistic effects
- 2. Different populations
- 3. Unwanted noise due to random numbers

Can we do better?

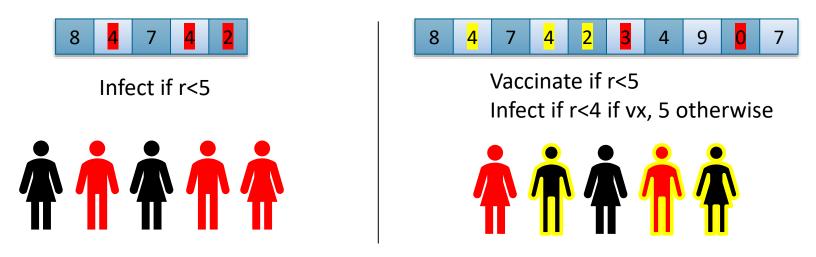
- Increase covariance (common seeds)
- Common random numbers eliminate unwanted noise

DM DESERVICES INC.

How many deaths are averted by a vaccine?

What causes differences between base and vaccine simulations?

- 1. Mechanistic effects
- 2. Different populations
- 3. Unwanted noise due to random numbers

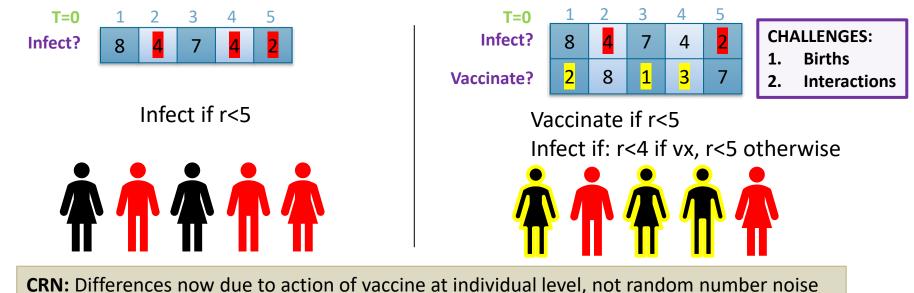

Can we do better?

- Increase covariance (common seeds)
- Common random numbers eliminate unwanted noise

DM DESERVICES INC.

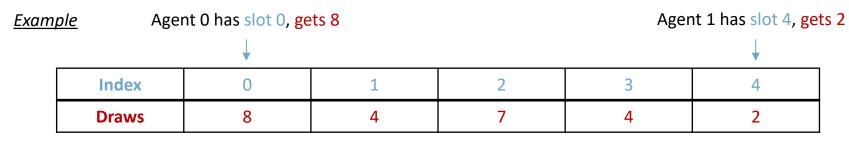
Fundamentally, ABMs don't work like you'd assume

Pseudo-random numbers, e.g. np.random.randint(10)


Problem: Centralized random number stream used for everything. Any difference between simulations results in *misaligned random draws*.

Result: Outputs comparable only at the population level, not the individual level – even with common seeds.

Solution is Common Random Numbers (CRN)


- Idea dates back to the early days of Monte Carlo simulation
- Use the same random draw per decision, agent, time
- Simple idea, but CRN has never been achieved in ABM (until now)

5

Modeling innovations required to achieve CRN

- 1. Separate random streams for each **decision**, seed offset from hash of label
- 2. On time step t_i , reset each stream and "jump" t_i times
- 3. Each new agent is assigned a "slot" by a parent, used as index in draws array

4. Pairwise random numbers by bit-mixing per-agent random numbers

$$r_{ij}$$
 = XOR($r_i * r_j, r_i - r_j$) / max(uint64)

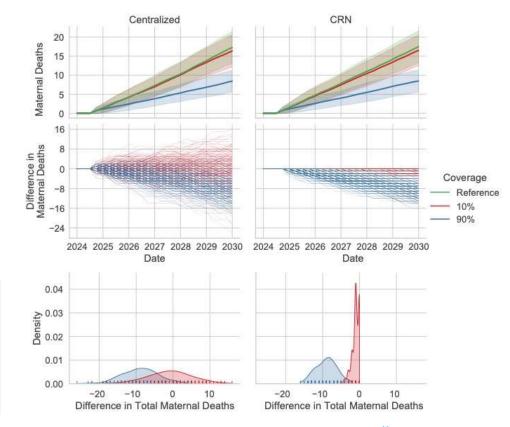
Use pairwise draws for interactions like networks and transmission

We have implemented CRN in Starsim

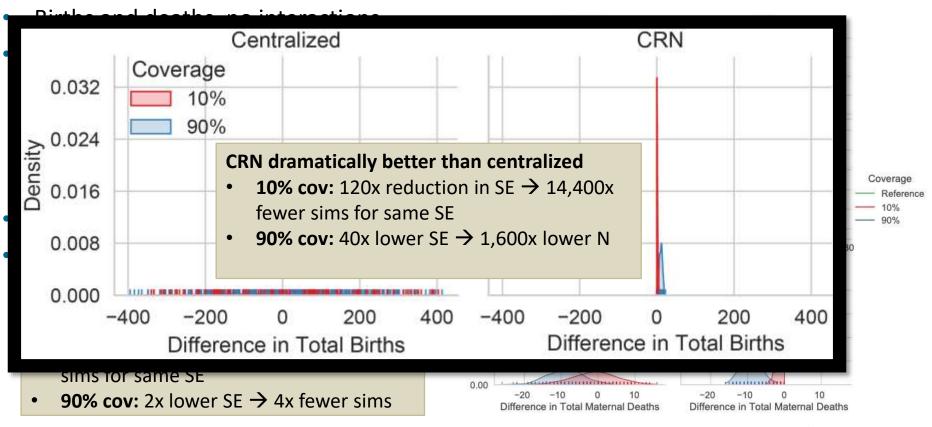
- CRN methods implemented in the new Starsim ABM Framework
- User-centric design
- Straightforward statistical distributions internally implement pseudo-random decision streams, jumping, and slot-based slicing

Does it work? Does it matter?

```
import starsim as ss
class SIR(ss.Infection):
    def init (self, user pars=None):
        self.default pars(
            dur inf = ss.weibull(c=3, scale=10)
        self.update pars(user pars)
        return
    def set prognoses(self, uids):
        duration = self.dur inf.rvs(uids)
        self.t recovery = self.sim.t + duration
        return
```

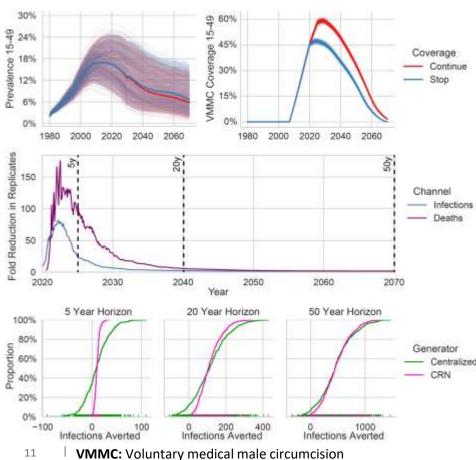


MNCH: Prevention of Postpartum Hemorrhage


- Births and deaths, no interactions
- MMR in sub-Saharan Africa estimated at 500 per 100,000
 - PPH is a leading cause, about 25%
 - E-MOTIVE package efficacy ~60%
 - Increased infant mortality for orphans
- N=100,000 agents, 250 replicates
- Differences by pairing random seeds

CRN dramatically better than centralized

- E-MOTIVE never worse with CRN
- 10% cov: 6x reduction in SE → 36x fewer sims for same SE
- **90% cov:** 2x lower SE \rightarrow 4x fewer sims



MNCH: Prevention of Postpartum Hemorrhage

9

HIV: Impact of continued VMMC scale-up

Full dynamic transmission model

- Inspired by <u>HIV modeling consortium</u>
- Evaluation periods of 5y, 20y, and 50y
- Basic HIV module including prognosis, ART, and transmission
- SSA-like, 10k agents, 250 reps
 - VMMC efficacy 60%, continue or stop

Sim savings	5y	20y	50y
Infections Averted	24x	2.3x	1.4x
Deaths Averted	95x	5.7x	1.6x

Significant savings at 5y, but benefits decrease with longer evaluation periods

DM INSTITUTE FOR DESEASE VICTOR FOR

CRN is a significant achievement for ABM

- Method overcomes a longstanding signal-to-noise problem in ABM
- A first for comp epi, enabled by multiple innovations
- User-friendly implementation
- Benefits include:
 - Fewer simulations for same SE
 - Results interpretable at individual level
 - Aids scientific communication
 - Scenarios, sensitivity, & calibration
- Find: Value depends on use case
 - New standard for non-interacting & high-sensitivity applications
 - Less benefit for large perturbations

- Limitation: population scaling
 - Random numbers are cheap
 - But pairwise algos are O(N²)
- Currently socializing methods & applying where appropriate
- Publication: D. Klein, R. Abeysuriya, R. Stuart, and C. Kerr, "<u>Noise-free</u> <u>comparison of stochastic agent-based</u> <u>simulations using common random</u> <u>numbers</u>" Submitted to PLOS CB

