Bayesian optimization framework for recalibration of EMOD's within-host malaria model

• Fitting the *model* to *data* to infer values of unknown model parameters

- Fitting the *model* to *data* to infer values of unknown model parameters
 - Parameters may be unknown because they...
 - Are impossible to measure
 - Require elaborate, costly, or unethical experiments

- Fitting the *model* to *data* to infer values of unknown model parameters
 - Parameters may be unknown because they...
 - Are impossible to measure
 - Require elaborate, costly, or unethical experiments
- Using reference sites with data on transmission and malaria epidemiology

- Fitting the *model* to *data* to infer values of unknown model parameters
 - Parameters may be unknown because they...
 - Are impossible to measure
 - Require elaborate, costly, or unethical experiments
- Using reference sites with data on transmission and malaria epidemiology
 - Older datasets: capture natural history of disease without interventions
 - Newer datasets: capture transmission dynamics in the context of interventions, and may include higher quality measurements

EMOD within-host dynamics could be improved

Motivation: Mathematical models need to be able to reproduce real-life disease dynamics to make meaningful predictions

EMOD within-host dynamics could be improved

Motivation: Mathematical models need to be able to reproduce real-life disease dynamics to make meaningful predictions

1. EMOD over-attributes transmission to infections that were once symptomatic

EMOD within-host dynamics could be improved

Motivation: Mathematical models need to be able to reproduce real-life disease dynamics to make meaningful predictions

- 1. EMOD over-attributes transmission to infections that were once symptomatic
- 2. EMOD simulations demonstrate a sudden and extreme rebound in clinical incidence following mass drug administration

What makes model calibration difficult?

Complexity of models like EMOD often comes with **long simulation times** and involves **large numbers of unknown input parameters**.

- At a certain point, calibration requires high-performance computing infrastructure

"**Curse of dimensionality**" – the number of evaluations required increases exponentially with the number of parameters under calibration.

Highly-irregular and multi-dimensional goodness-of-fit space with many local optima.

Methods

Overall goal is to find input parameters X_i that best fit reference data and maximize $Y(X_i)$

Input Parameters

17 EMOD config parameters related to:

- Immunity
- Symptoms
- Human-Mosquito Transmission
- + 5 different innate immune variation models

$$\mathbf{X_i} = \begin{bmatrix} x_{1,i} \\ \cdots \\ x_{17,i} \end{bmatrix}$$

Overall goal is to find input parameters X_i that best fit reference data and maximize $Y(X_i)$

Input Parameters

17 EMOD config parameters related to:

- Immunity
- Symptoms
- Human-Mosquito Transmission

Types of Data Objectives

- $y_1 =$ Incidence vs. Age
- $y_2 =$ Prevalence vs. Age
- $y_3 = Parasite Density Distribution (by age)$
- y_4 = Gametocyte Density Distribution (by age)
- $y_5 =$ Infectiousness vs. Gametocyte Density (by age)

$$\mathbf{X_i} = \begin{bmatrix} x_{1,i} \\ \cdots \\ x_{17,i} \end{bmatrix}$$

Corresponding to trial data from **8 sites** across 4 countries in Sub-Saharan Africa

Overall goal is to find input parameters X_i that best fit reference data and maximize $Y(X_i)$

Input Parameters

17 EMOD config parameters related to:

- Immunity
- Symptoms
- Human-Mosquito Transmission

Types of Data Objectives

- $y_1 =$ Incidence vs. Age
- $y_2 =$ Prevalence vs. Age
- $y_3 = Parasite Density Distribution (by age)$
- y_4 = Gametocyte Density Distribution (by age)
- $y_5 =$ Infectiousness vs. Gametocyte Density (by age)

$$\mathbf{X_i} = \begin{bmatrix} x_{1,i} \\ \cdots \\ x_{17,i} \end{bmatrix}$$

$$\mathbf{Y}(\mathbf{X}_{\mathbf{i}}) = \max\left(\frac{y_{n, site, i}}{y_{n, site, default}}\right)$$

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

Simulations are tuned to match conditions at each reference site:

- Seasonality and transmission intensity
- Antimalarial treatment
- Diagnostics

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

Simulations are tuned to match conditions at each reference site:

- Seasonality and transmission intensity
- Antimalarial treatment
- Diagnostics

Scoring: likelihood of observing simulation outputs given the reference data

- Per site-specific objective, relative to baseline parameterization
- Y for simulated parameter set is the *maximum* site-specific objective score

(better < 1 < worse)

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

The emulator is faster than running EMOD (minutes vs. hours)

• 5,000 candidates >>> 100 simulations

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

Trust Region-Based Thompson Sampling balances exploration against exploitation to select new samples.

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

The cycle of simulation, emulation, and acquisition repeats for 40 cycles, until 5,000 locations in **X** are simulated and scored

Optimization steps are much faster than EMOD simulations, and contribute little to overall runtime

Optimization steps are much faster than EMOD simulations, and contribute little to overall runtime

Parameter search converges on region of best fit

20

50

~ - default

Default model parameterization fit to data

Default model parameterization fit to data

No new parameter set has improved on all objectives

Maybe due to:

- TuRBO search
- Scoring method
- Baseline performance

Recalibrated vs. Prior Calibrated Parameter Set

Recalibrated vs. Prior Calibrated Parameter Set

Recalibrated vs. Prior Calibrated Parameter Set

The length scale GP hyperparameter describes the correlation between scores over stretches of parameter

space

Short length scale = Strong influence

traveling a short "distance" in parameter space results in drastically different scores

Long length scale = Weak influence capable of extrapolating scores across long "distances" in parameter space

Length scales per-objective show specific parameter influence

Next Steps

Validating and Extending Framework

- Assess recalibrated model performance against datasets not used for fitting
 - Peak parasitemia, gametocytemia, and duration of naive infections (*malariatherapy*, 1940-1963)
 - Severe disease (The Gambia and Kenya, 1990-1996)
 - Prevalence, densities, and infectiousness by DMFA (Sapone, Burkina Faso, 2018-2020)

Validating and Extending Framework

- Assess recalibrated model performance against datasets not used for fitting
 - Peak parasitemia, gametocytemia, and duration of naive infections (*malariatherapy*, 1940-1963)
 - Severe disease (The Gambia and Kenya, 1990-1996)
 - Prevalence, densities, and infectiousness by DMFA (*Sapone, Burkina Faso, 2018-2020*)

• Repeat calibration for alternative innate immune models

Synchronized innate immune responses may drive unexpected model behavior

SMC = Seasonal Malaria Chemoprevention

Mass drug campaign for children

Month

Calibration with heterogeneous innate immunity

Other innate immune models exist in EMOD, adding *age-based* or *inter-individual* heterogeneity to:

Pyrogenic threshold – the concentration [iRBC/ μ L] at which stimulation of the innate inflammatory immune response is half its maximum value

The maximum kill rate for iRBCs due to the inflammatory innate immune response, which increases along a sigmoidal curve as fever increases above 38.5 degrees Celsius

Default parameter set performance varies across innate immunity models with constant distribution

* Rodriguez-Barraquer et al. "Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure" eLife (2018) * Building on work by Annie Stahlfeld

56

In Conclusion

- Model calibration is important, but challenging
- Bayesian optimization with gaussian process emulation accelerates calibration without sacrificing goodness-of-fit
- Fitting reveals key parameter-output relationships in EMOD malaria
- Changes to model structure (i.e. innate immune variation) warrant separate recalibrations

Thank You

Caitlin Bever

Aurélien Cavelan

Jaline Gerardin

Melissa Penny

Ricky Richter

Prashanth Selvaraj

Anne Stahlfeld

Josh Suresh

Contact: tobias.holden@northwestern.edu

NIAID 1F31AI172387-01

