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What is ‘calibration’?

• Fitting the model to data to infer values of unknown model parameters

‒ Parameters may be unknown because they... 
◦ Are impossible to measure
◦ Require elaborate, costly, or unethical experiments

• Using reference sites with data on transmission and malaria epidemiology

‒ Older datasets: capture natural history of disease without interventions

‒ Newer datasets: capture transmission dynamics in the context of interventions, 
and may include higher quality measurements



6 |

EMOD within-host dynamics could be improved

Motivation: Mathematical models need to be able to reproduce real-life disease 
dynamics to make meaningful predictions



7 |

EMOD within-host dynamics could be improved

Motivation: Mathematical models need to be able to reproduce real-life disease 
dynamics to make meaningful predictions

1. EMOD over-attributes transmission to infections that were once symptomatic



8 |

EMOD within-host dynamics could be improved

Motivation: Mathematical models need to be able to reproduce real-life disease 
dynamics to make meaningful predictions

1. EMOD over-attributes transmission to infections that were once symptomatic

2. EMOD simulations demonstrate a sudden and extreme rebound in clinical incidence 
following mass drug administration
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What makes model calibration difficult?

Complexity of models like EMOD often comes with long simulation
times and involves large numbers of unknown input parameters.

‒ At a certain point, calibration requires high-performance computing infrastructure

“Curse of dimensionality” – the number of evaluations required
increases exponentially with the number of parameters under
calibration.

Highly-irregular and multi-dimensional goodness-of-fit space with
many local optima.
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Methods
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Overall goal is to find input parameters 𝐗𝐢

that best fit reference data and maximize 𝐘 𝐗𝐢

𝐗𝐢 =
𝑥1,𝑖
…
𝑥17,𝑖

Input Parameters
17 EMOD config parameters related to:

• Immunity

• Symptoms

• Human-Mosquito Transmission

+ 5 different innate immune variation 
models Antigen Switch Rate

MSP Variants
MSP Merozoite Kill Fraction

Nonspecific Types
Nonspecific Antibody Growth Rate

Nonspecific Antigenicity Factor
PfEMP1 Variants

Cytokine Gametocyte Inactivation

Max Fever Kill Rate of iRBCs
Pyrogenic Threshold

Erythropoiesis Anemia Effect
RBC Destruction Multiplier 

Max Individual Infections

Gametocyte...
Production Rate

Fraction Male
Stage Survival

Mosquito Stage 
Survival
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Input Parameters

𝐗𝐢 =
𝑥1,𝑖
…
𝑥17,𝑖

Overall goal is to find input parameters 𝐗𝐢

that best fit reference data and maximize 𝐘 𝐗𝐢

Types of Data Objectives

𝑦1 = Incidence vs. Age
𝑦2 = Prevalence vs. Age
𝑦3 = Parasite Density Distribution (by age)
𝑦4 = Gametocyte Density Distribution (by age)
𝑦5 = Infectiousness vs. Gametocyte Density (by age)

17 EMOD config parameters related to:

• Immunity

• Symptoms

• Human-Mosquito Transmission

Corresponding to trial data from 8 sites 
across 4 countries in Sub-Saharan Africa
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𝐗𝐢 =
𝑥1,𝑖
…
𝑥17,𝑖

Input Parameters

Overall goal is to find input parameters 𝐗𝐢

that best fit reference data and maximize 𝐘 𝐗𝐢

Types of Data Objectives

𝑦1 = Incidence vs. Age
𝑦2 = Prevalence vs. Age
𝑦3 = Parasite Density Distribution (by age)
𝑦4 = Gametocyte Density Distribution (by age)
𝑦5 = Infectiousness vs. Gametocyte Density (by age)

𝐘 𝐗𝐢 = max
𝑦𝑛, 𝑠𝑖𝑡𝑒, 𝑖

𝑦𝑛, 𝑠𝑖𝑡𝑒, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝑎𝑐𝑟𝑜𝑠𝑠 𝑠𝑖𝑡𝑒𝑠:

17 EMOD config parameters related to:

• Immunity

• Symptoms

• Human-Mosquito Transmission
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Bayesian Optimization with Gaussian Processes 

Simulation
Plug-in 

parameter sets 
(X)

Run EMOD 
simulations

Score 
simulation 

goodness-of-fit
(Y)

Emulation Train GP on 
observed Y~X

Predict scores 
of new 

parameter sets

Acquisition
Adaptively 

shrink/expand 
search space

Select new 
parameter sets 
for simulation

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*
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Simulation
Plug-in 

parameter sets 
(X)

Run EMOD 
simulations

Score 
simulation 

goodness-of-fit
(Y)

Emulation Train on 
observed Y~X Fit GP model

Predict scores at 
new candidate 
parameter sets

Acquisition
Adaptively 

shrink/expand 
eligible 

parameter space

Select new 
parameter sets 
for simulation

Bayesian Optimization with Gaussian Processes 

Simulations are tuned to match conditions at each reference site:

- Seasonality and transmission intensity

- Antimalarial treatment

- Diagnostics

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

Scoring: likelihood of observing simulation outputs given the reference data

- Per site-specific objective, relative to baseline parameterization

- Y for simulated parameter set is the maximum site-specific objective score

(better < 1 < worse)
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Bayesian Optimization with Gaussian Processes 

Simulation
Plug-in 

parameter sets 
(X)

Run EMOD 
simulations

Score 
simulation 

goodness-of-fit
(Y)

Emulation Train GP on 
observed Y~X

Predict scores 
of new 

parameter sets

Acquisition
Adaptively 

shrink/expand 
eligible 

parameter space

Select new 
parameter sets 
for simulation

The emulator is faster than running EMOD (minutes vs. hours)

• 5,000 candidates >>> 100 simulations

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*
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Bayesian Optimization with Gaussian Processes 

Simulation
Plug-in 

parameter sets 
(X)

Run EMOD 
simulations

Score 
simulation 

goodness-of-fit
(Y)

Emulation Train GP on 
observed Y~X

Predict scores 
of new 

parameter sets

Acquisition
Adaptively 

shrink/expand 
search space

Select new 
parameter sets 
for simulation

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

Trust Region-Based Thompson Sampling balances exploration against 
exploitation to select new samples.
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Bayesian Optimization with Gaussian Processes 

Simulation
Plug-in 

parameter sets 
(X)

Run EMOD 
simulations

Score 
simulation 

goodness-of-fit
(Y)

Emulation Train GP on 
observed Y~X

Predict scores 
of new 

parameter sets

Acquisition
Adaptively 

shrink/expand 
search space

Select new 
parameter sets 
for simulation

Based on Reiker et al. (Nat comms 2021) with support from Melissa Penny and Aurélien Cavelan*

The cycle of simulation, emulation, and acquisition repeats for 40 
cycles, until 5,000 locations in X are simulated and scored

Finish
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Optimization steps are much faster than EMOD 
simulations, and contribute little to overall runtime

Emulator < 20 minutes
per 5,000 candidates

Initial EMOD Simulations
~ 5-10 hours per 100 samples

Later EMOD Simulations
~ 2 hours per 100 samples

GP fitting
Sample Acquisition
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Optimization steps are much faster than EMOD 
simulations, and contribute little to overall runtime

Emulator < 20 minutes
per 5,000 candidates

Initial EMOD Simulations
~ 5-10 hours per 100 samples

Later EMOD Simulations
~ 2 hours per 100 samples

With n observations, model fitting requires 
𝑶(𝒏𝟑) time and 𝑂(𝑛2) memory

GP fitting
Sample Acquisition
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Parameter search converges on region of best fit

Batch
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Default model parameterization fit to data

𝒀𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆
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Default model parameterization fit to data

Target for Improvement

𝒀𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆
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Improvement in goodness-of-fit over batches
Training Batch 0
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Improvement in goodness-of-fit over batches
Training Batch 0

Score, 𝒀
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Training Batch 6
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Improvement in goodness-of-fit over batches
Batch 10: TuRBO 1
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Improvement in goodness-of-fit over batches
Batch 14: TuRBO 5
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Improvement in goodness-of-fit over batches
Batch 15: TuRBO 6



32 |

Improvement in goodness-of-fit over batches
Batch 18: TuRBO 9
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Improvement in goodness-of-fit over batches
Batch 22: TuRBO 13
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Improvement in goodness-of-fit over batches
Batch 25: TuRBO 16
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Improvement in goodness-of-fit over batches
Batch 26: TuRBO 17



36 |

Improvement in goodness-of-fit over batches
Batch 27: TuRBO 18
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Improvement in goodness-of-fit over batches
Batch 33: TuRBO 24
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Improvement in goodness-of-fit over batches
Batch 35 : TuRBO 26
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Improvement in goodness-of-fit over batches
Batch 36: TuRBO 27
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Improvement in goodness-of-fit over batches
Batch 38: TuRBO 29
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Improvement in goodness-of-fit over batches
Batch 41: TuRBO 32
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Improvement in goodness-of-fit over batches
Batch 52: TuRBO 43
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Improvement in goodness-of-fit over batches
Batch 56: TuRBO 47
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Improvement in goodness-of-fit over batches
Batch 60: TuRBO 51
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No new parameter set has improved on all objectives
Batch 60: TuRBO 51

Maybe due to:
• TuRBO search
• Scoring method
• Baseline performance
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Data
Prior Calibration

Recalibration

Recalibrated vs. Prior Calibrated Parameter Set

Dielmo

Ndiop
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Recalibrated vs. Prior Calibrated Parameter Set
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Ndiop

Namawala
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Data
Prior Calibration

Recalibration

Recalibrated vs. Prior Calibrated Parameter Set

Dielmo

Ndiop
Laye

Namawala
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The length scale GP hyperparameter describes the 
correlation between scores over stretches of parameter 

space

Short length scale = Strong influence
traveling a short “distance” in parameter 

space results in drastically different scores

Long length scale = Weak influence
capable of extrapolating scores across 

long “distances” in parameter space
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Length scales per-objective show specific parameter 
influence

Length Scale
Percentile (Average)

least influence

most influence

Immunity Transmission
Symptoms &

Infection
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Next Steps
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Validating and Extending Framework
• Assess recalibrated model performance against datasets not used for 

fitting
‒ Peak parasitemia, gametocytemia, and duration of naive infections (malariatherapy, 1940-

1963)
‒ Severe disease (The Gambia and Kenya, 1990-1996)
‒ Prevalence, densities, and infectiousness by DMFA (Sapone, Burkina Faso, 2018-2020)
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Validating and Extending Framework
• Assess recalibrated model performance against datasets not used for 

fitting
‒ Peak parasitemia, gametocytemia, and duration of naive infections (malariatherapy, 1940-

1963)
‒ Severe disease (The Gambia and Kenya, 1990-1996)
‒ Prevalence, densities, and infectiousness by DMFA (Sapone, Burkina Faso, 2018-2020)

• Repeat calibration for alternative innate immune models
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Synchronized innate immune responses may drive 
unexpected model behavior

5         6    7 8        9       10 11      12

In
ci

de
nc

e

Month

SMCNo SMC

SMC = Seasonal Malaria 
Chemoprevention

Mass drug campaign for children

When modeled without variation 
in innate immune parameters, 
paradoxical rebound is observed
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Calibration with heterogeneous innate immunity

Other innate immune models exist in EMOD, adding age-based or inter-
individual heterogeneity to:

Pyrogenic threshold – the concentration [iRBC/μL] at which 
stimulation of the innate inflammatory immune response is half its 
maximum value
Variation

The maximum kill rate for iRBCs due to the inflammatory innate 
immune response, which increases along a sigmoidal curve as 
fever increases above 38.5 degrees Celsius
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Default parameter set performance varies across 
innate immunity models with constant distribution

* Rodriguez-Barraquer et al.  “Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure” eLife (2018)
* Building on work by Annie Stahlfeld

Pyrogenic Threshold vs. Age Pyrogenic Threshold 
vs. Age (Increasing)*

Pyrogenic Threshold vs. Age 
with Inter-Individual 

Variation*

Dielmo

Ndiop
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In Conclusion

• Model calibration is important, but challenging

• Bayesian optimization with gaussian process emulation accelerates 
calibration without sacrificing goodness-of-fit

• Fitting reveals key parameter-output relationships in EMOD malaria

• Changes to model structure (i.e. innate immune variation) warrant separate 
recalibrations
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Thank You

Caitlin Bever

Aurélien Cavelan

Jaline Gerardin

Melissa Penny

Ricky Richter

Prashanth Selvaraj

Anne Stahlfeld

Josh Suresh

Contact: tobias.holden@northwestern.edu

NIAID 1F31AI172387-01

mailto:tobias.holden@northwestern.edu
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