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An open-source individual-based stochastic model of 
malaria epidemiology and control.
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OpenMalaria

Smith et al 2006, 2008, 2012
Reiker 2021
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github.com/SwissTPH/openmalaria



Model parameters
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Infection Incidence

Acquisition of Immunity

Parasite densities

Disease Model:
• Pathogenesis
• Clinical
• Severe
• Mortality

Between 20 and 25 model 
parameters need to be calibrated.

These parameters are not easily 
'observable' in practice.

They need to be calibrated using 
observed data.

Why recalibrate?
- New data
- New model features
- Model variants
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Loss function: 23 parameters -> 12 outputs
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The curse of dimensionality

Ideally, we would like 10 samples per dimension.

1D: 10 samples
2D: 100 samples
3D: 1000 samples
...
23D: 10^23 samples (more than stars in the observable universe!)

Realistically, we can only do 10,000 samples maximum:
0.00000000000000001% of 10^23

Bayesian optimization helps in minimizing the number of samples 
needed to converge.

However, exploration is still challenging.
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Bayesian Optimization: step-by-step example

Ackley 1D

Simple 1D function.

Goal: minimize the function for x

Unfortunately, in real applications 
we do not know the shape of the 
function.
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Bayesian Optimization: step-by-step example

1. Initial sampling
o OpenMalaria: 3000 initial samples
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Bayesian Optimization: step-by-step example

1. Initial sampling
o OpenMalaria: 3000

2. Fit surrogate model
o Single-task Gaussian process
o Multi-task Gaussian process
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Bayesian Optimization: step-by-step example

1. Initial sampling
o OpenMalaria: 3000

2. Fit surrogate model
o Single-task Gaussian
o Multi-task Gaussian process

3. Optimize acquisition function
o Exploration vs exploitation dilemma

("mutli-armed bandit problem")
o Optimize for mean vs uncertainty
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Bayesian Optimization: step-by-step example

1. Initial sampling
o OpenMalaria: 3000

2. Fit surrogate model
o Single-task Gaussian
o Multi-task Gaussian process

3. Optimize acquisition function
o Exploration vs exploitation dilemma

("mutli-armed bandit problem")
o Optimize for mean vs uncertainty

Possible acquisition functions:
• Expected improvement (more exploration)
• Upper confidence bound (can be adjusted)
• Thompson sampling (more exploitation)
• ...
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Bayesian Optimization: step-by-step example

1. Initial sampling
o OpenMalaria: 3000

2. Fit surrogate model
o Single-task Gaussian
o Multi-task Gaussian process

3. Optimize acquisition function
o Exploration vs exploitation dilemma

("mutli-armed bandit problem")
o Optimize for mean vs uncertainty

4. Add point to observed data
o OpenMalaria: batches of 64 points
o Up to 1h on A100 GPU to fit Multi-

Task gaussian process
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Bayesian Optimization: step-by-step example
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Convergence of Ackley 5D

No convergence in 5D.

- The search space is too already large!
- Most of the search space is unknown
- Uncertainty (variance) is high everywhere
- Acquisition function does only exploration 

(forever)
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Trust Region Bayesian Optimization (TuRBO)

Algorithm fails to improve over 3 consecutive 
iterations
- Cut the search space in half around the best 

current point

[1]: Eriksson, David, et al. Scalable global optimization via local Bayesian optimization. Advances in Neural 
Information Processing Systems. 2019

https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
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35

Trust Region Bayesian Optimization (TuRBO)

Algorithm fails to improve over 3 consecutive 
iterations
- Cut the search space in half around the best 

current point

Algorithm succeeds in improving over 3 
consecutive iterations
- Double the search space around the best 

current point

TuRBO:
- Guaranteed convergence
- More likely to end up in a local minima
- Requires more initial samples

[1]: Eriksson, David, et al. Scalable global optimization via local Bayesian optimization. Advances in Neural 
Information Processing Systems. 2019

https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
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Convergence okf Ackley 5D with TuRBO (right)
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Convergence with OpenMalaria 23 parameters
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Parameter-objective correlation
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Parameter-objective correlation
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Takeway messages

We have developed a framework to calibrate 
individual-based models (or other functions).

NOT plug and play:
- It requires high quality, curated data
- Objectives must be constrained enough
- The search space must be well defined
- Tools to validate the model are needed

Limitations:
- The curse of dimensionality
- Computing cost and time
- Unidentifiability of some parameters
- Model limitations

Technical framework: Python & BoTorch

Also used for:
- EMOD (IDM, Chicago)
- Opisthorchis model (Swiss TPH, Basel)
- Vaccine trials (TKI, Perth)
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Identifiability – comparing objectives across multiple fits
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