Swiss TPH

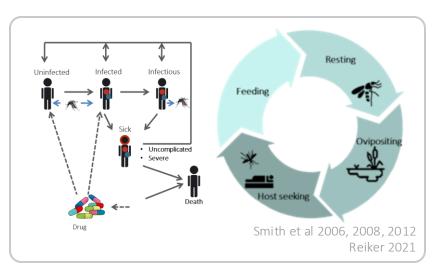
Using Bayesian Optimization to calibrate individual-based models:

Application to OpenMalaria

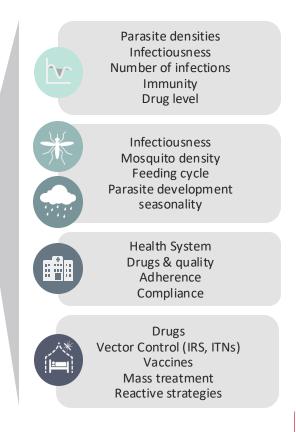
Aurélien Cavelan <aurelien.cavelan@unibas.ch>

Melissa Penny <melissa.penny@unibas.ch> Nakul Chitnis <nakul.chitnis@unibas.ch> Lars Kamber <lars.kamber@unibas.ch>

An open-source individual-based stochastic model of malaria epidemiology and control.



github.com/SwissTPH/openmalaria



Model parameters

labels	R0000	
$1\ln(1 - S\infty)$	0.0507	
2 – E*	0.0325	Infection Incidence
3 – S _{imm}	0.1382	
$4 - X_p^*$	1514.3859	
$5 - \gamma_p$	2.0369	
$6 - \sigma_i^2$	10.1736	
$7 - X_y^*$	35158523.3113	Acquisition of Immunity
$8 - X_{h}^{*}$	97.3347	
$9-ln(1-\alpha_m)$	2.3303	
$10 - a_m^*$	2.5311	
$11 - \sigma_0^2$	0.6557	Parasite densities
$12 - X_{\nu}^{*}$	0.9162	
$13 - Y_2^*$	6502.2634	
$14 - \alpha$	142601.9125	
15 – DensityBias(nonGarki)	0.1774	
$16 - \sigma_2$	0.05	
$17 - log(\phi_1)$	0.7362	
$18 - Q_D$	0.0188	
19 – Q _n	49.539	
20 – DensityBias(Garki)	4.7961	Disease Model:
$21 - Y_{B_1}^*$	784455.6	
22 – Immune penalty	1.0	 Pathogenesis
23 – Immune effector decay	0.0	Clinical
24 – F ₀	0.0968	Severe
$25 - \frac{\log^2}{\omega}$	0.2754	
26 - Y ₁ *	0.5965	Mortality
27 – Asexualimmunitydecay	0.0	
$28 - Y_0^*$	296.3024	
29 – Idetemultiplier	2.7975	
$30 - a_F^*$	0.1174	
31 – <i>Muller</i> 1	0.0	
32 – Muller ₂	0.0	

Between 20 and 25 model parameters need to be calibrated.

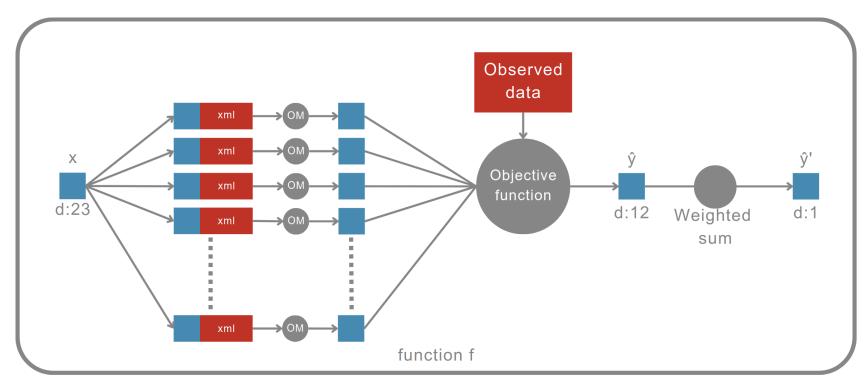
These parameters are not easily 'observable' in practice.

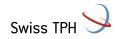
They need to be calibrated using observed data.

Why recalibrate?

- New data
- New model features
- Model variants

Loss function: 23 parameters -> 12 outputs





The curse of dimensionality

Ideally, we would like 10 samples per dimension.

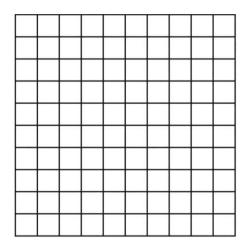
1D: 10 samples**2D:** 100 samples**3D:** 1000 samples

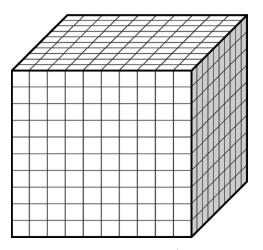
23D: 10^23 samples (more than stars in the observable universe!)

Realistically, we can only do **10,000 samples maximum**: 0.000000000000001% of 10^23

Bayesian optimization helps in minimizing the number of samples needed to converge.

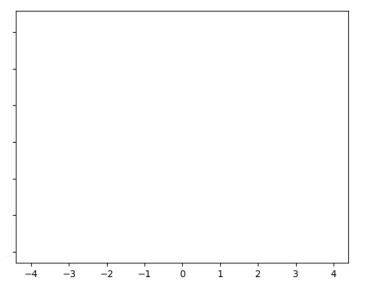
However, exploration is still challenging.







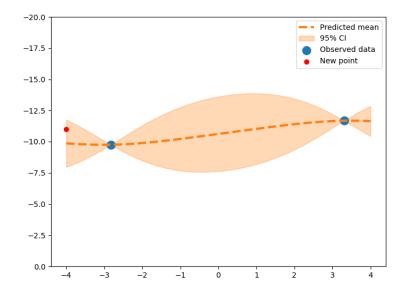
Ackley 1D



Simple 1D function.

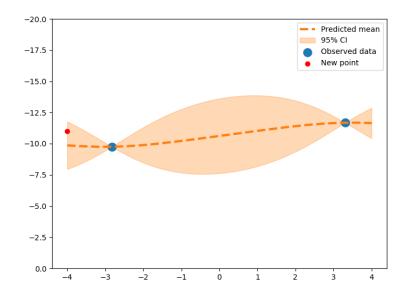
Goal: minimize the function for x

Unfortunately, in real applications we do not know the shape of the function.



1. Initial sampling

• OpenMalaria: 3000 initial samples



- 1. Initial sampling
 - o OpenMalaria: 3000

2. Fit surrogate model

- Single-task Gaussian process
- Multi-task Gaussian process



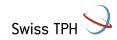
- 1. Initial sampling
 - o OpenMalaria: 3000

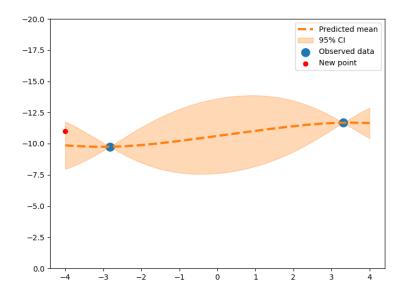
2. Fit surrogate model

- Single-task Gaussian
- Multi-task Gaussian process

3. Optimize acquisition function

- Exploration vs exploitation dilemma ("mutli-armed bandit problem")
- Optimize for mean vs uncertainty





- 1. Initial sampling
 - o OpenMalaria: 3000

2. Fit surrogate model

- Single-task Gaussian
- Multi-task Gaussian process

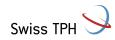
3. Optimize acquisition function

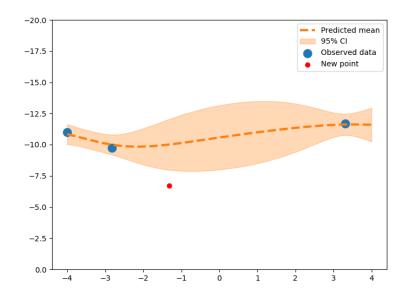
- Exploration vs exploitation dilemma ("mutli-armed bandit problem")
- Optimize for mean vs uncertainty

Possible acquisition functions:

- Expected improvement (more exploration)
- Upper confidence bound (can be adjusted)
- Thompson sampling (more exploitation)

...





- 1. Initial sampling
 - o OpenMalaria: 3000

2. Fit surrogate model

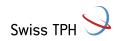
- Single-task Gaussian
- Multi-task Gaussian process

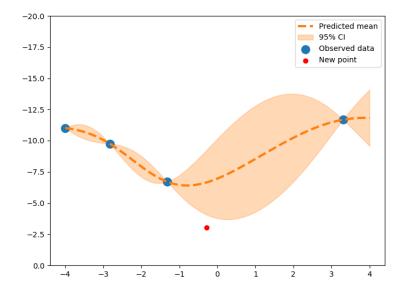
3. Optimize acquisition function

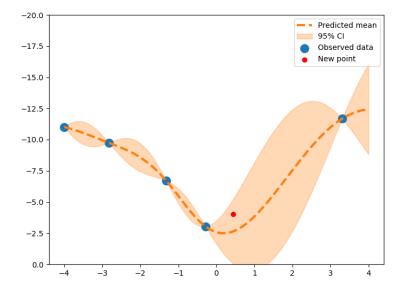
- Exploration vs exploitation dilemma ("mutli-armed bandit problem")
- Optimize for mean vs uncertainty

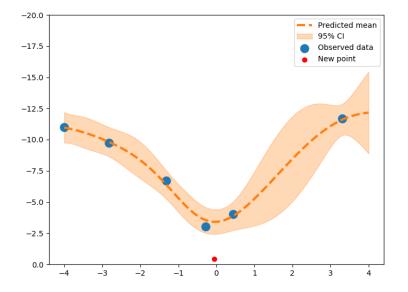
4. Add point to observed data

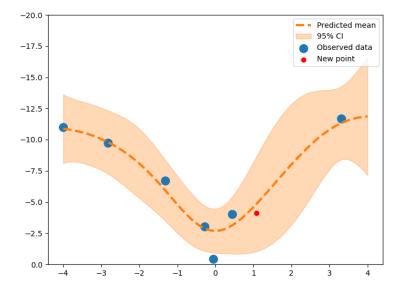
- OpenMalaria: batches of 64 points
- Up to 1h on A100 GPU to fit Multi-Task gaussian process

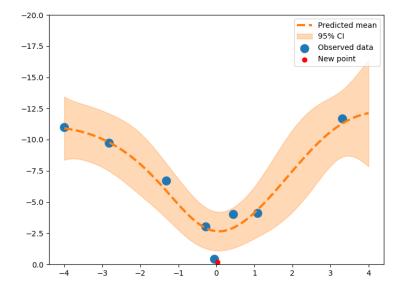


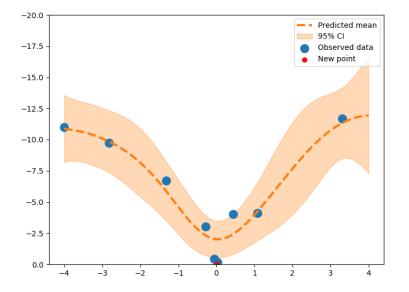


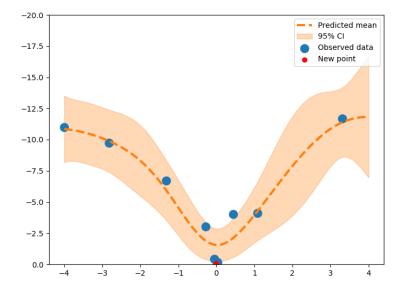


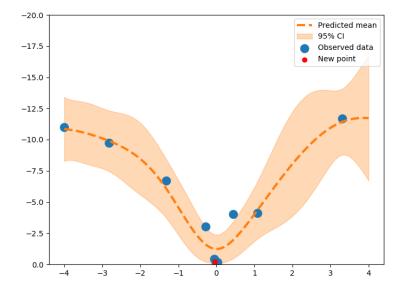


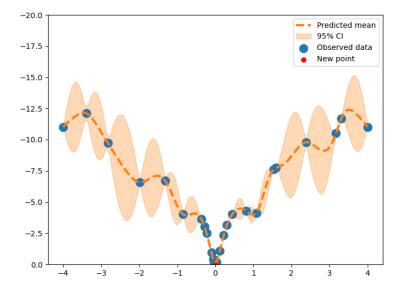


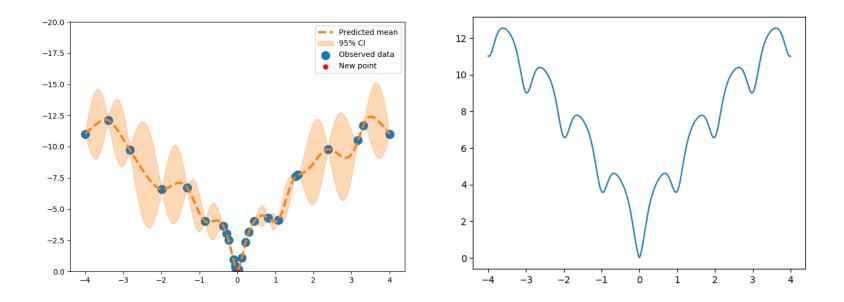




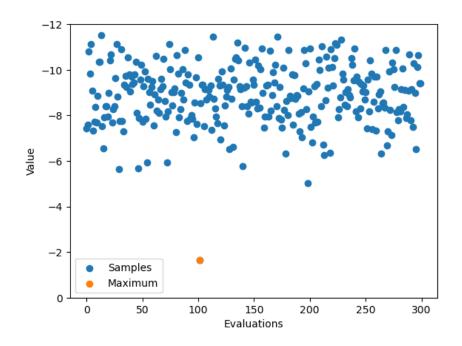






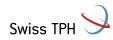


Convergence of Ackley 5D



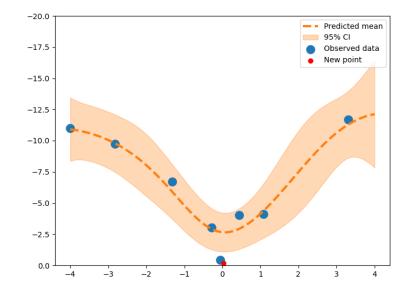
No convergence in 5D.

- The search space is too already large!
- Most of the search space is unknown
- Uncertainty (variance) is high everywhere
- Acquisition function does only exploration (forever)



Algorithm fails to improve over 3 consecutive iterations

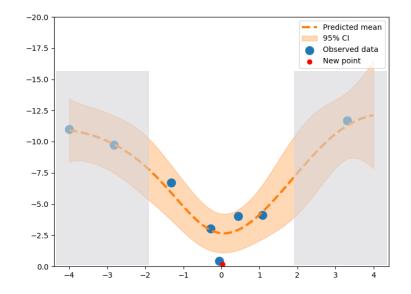
- Cut the search space in half around the best current point



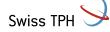
[1]: <u>Eriksson, David, et al. Scalable global optimization via local Bayesian optimization. Advances in Neural Information Processing Systems. 2019</u>

Algorithm fails to improve over 3 consecutive iterations

- Cut the search space in half around the best current point

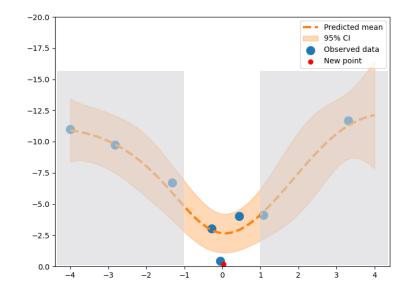


[1]: <u>Eriksson, David, et al. Scalable global optimization via local Bayesian optimization. Advances in Neural Information Processing Systems. 2019</u>

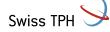


Algorithm fails to improve over 3 consecutive iterations

- Cut the search space in half around the best current point



[1]: <u>Eriksson, David, et al. Scalable global optimization via local Bayesian optimization. Advances in Neural Information Processing Systems. 2019</u>



Algorithm fails to improve over 3 consecutive iterations

 Cut the search space in half around the best current point

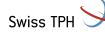
Algorithm succeeds in improving over 3 consecutive iterations

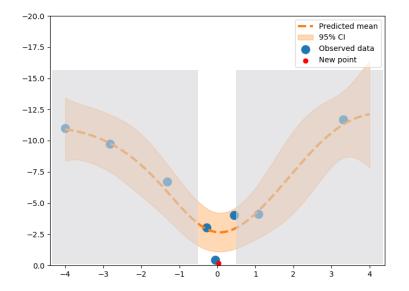
 Double the search space around the best current point

TuRBO:

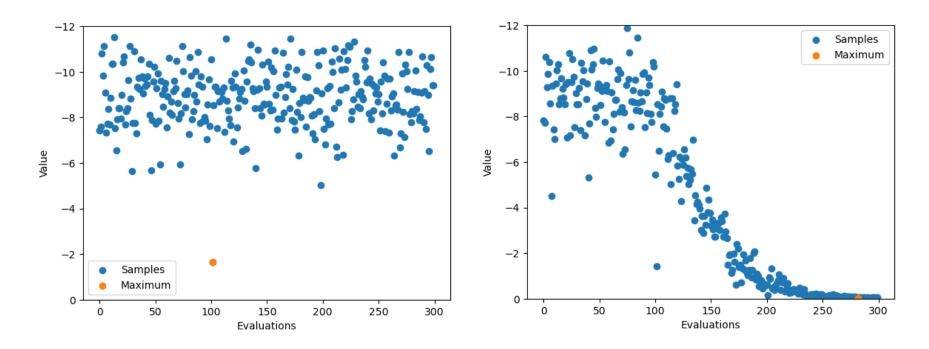
- Guaranteed convergence
- More likely to end up in a local minima
- Requires more initial samples

[1]: <u>Eriksson, David, et al. Scalable global optimization via local Bayesian optimization. Advances in Neural</u> <u>Information Processing Systems. 2019</u>

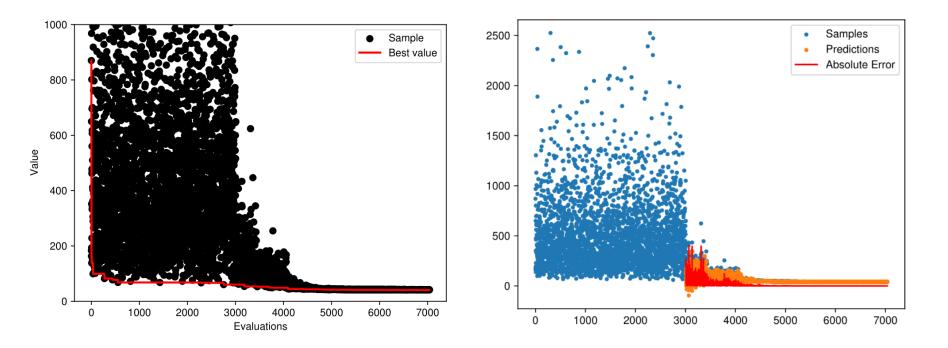




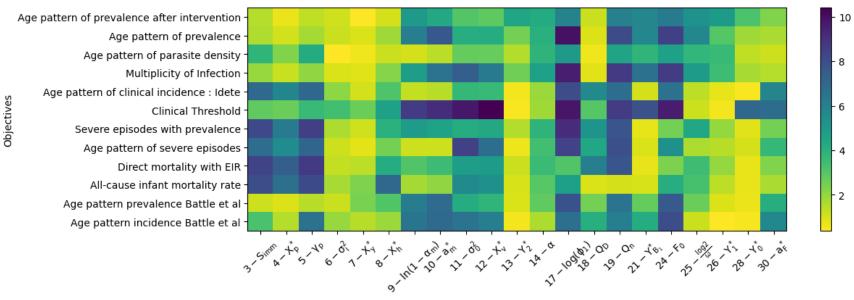
Convergence okf Ackley 5D with TuRBO (right)



Convergence with OpenMalaria 23 parameters

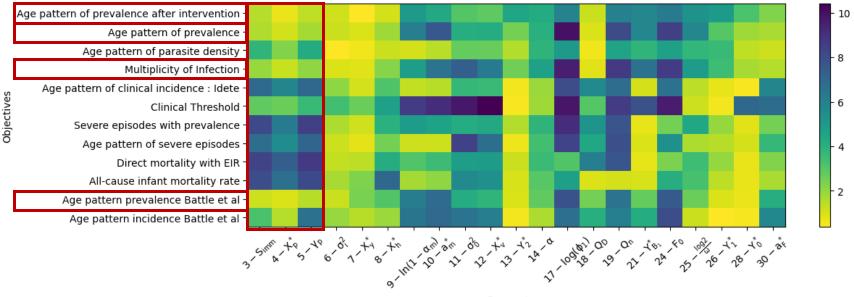


Parameter-objective correlation



Parameters

Parameter-objective correlation



Parameters

Takeway messages

We have developed a framework to calibrate individual-based models (or other functions).

NOT plug and play:

- It requires high quality, curated data
- Objectives must be constrained enough
- The search space must be well defined
- Tools to validate the model are needed

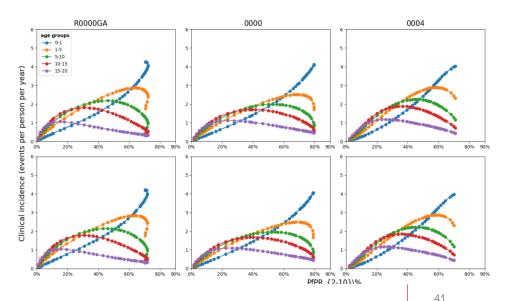
Limitations:

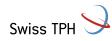
- The curse of dimensionality
- Computing cost and time
- Unidentifiability of some parameters
- Model limitations

Technical framework: Python & BoTorch

Also used for:

- EMOD (IDM, Chicago)
- Opisthorchis model (Swiss TPH, Basel)
- Vaccine trials (TKI, Perth)





Identifiability – comparing objectives across multiple fits

