

Assessing the effect of social contact structure on the impact of pneumococcal conjugate vaccines

2 Oct 2024

Anabelle Wong Infectious Disease Epidemiology Group (PI: Matthieu Domenech de Cellès) Max Planck Institute for Infection Biology

Streptococcus pneumoniae causes **pneumonia** and **invasive diseases**

Colonization is key for transmission

Streptococcus pneumoniae causes **pneumonia** and **invasive diseases**

Colonization is key for transmission

pcillin pcillion pcillion pcillion pcillion

PCVs cover up to 15 / 20 out of 100 serotypes¹

Serotype replacement observed in carriage

1. Gladstone et al. (2015) Vaccine

Serotype replacement observed in carriage across settings^{1,2}

1. Gladstone et al. (2015) Vaccine

2. Adamu et al. (2023) Nat Comm

Serotype replacement observed in carriage across settings^{1,2}

1. Gladstone et al. (2015) Vaccine

2. Adamu et al. (2023) Nat Comm

Can the social contact structure affect these dynamics?

Non-neutral model

Intrinsically favours co-existence

Neutral model

Can fix any prevalence

Duplicate compartments for vaccinated individuals

Allow vaccine protection to wane over time

Age 2,3,...,84

1) Our model can reproduce real-world VT colonization decline

1) Our model can reproduce real-world VT colonization decline

VE_{col} 0.33 0.60 0.77

1) Our model can reproduce real-world VT colonization decline

VE_{col} — 0.33 — 0.60 — 0.77

JOURNAL ARTICLE

Effect of Pneumococcal Conjugate Vaccine on Nasopharyngeal Colonization among Immunized and Unimmunized Children in a Community-Randomized Trial **i**

Katherine L. O'Brien 🕿, Eugene V. Millar, Elizabeth R. Zell, Melinda Bronsdon, Robert Weatherholtz, Raymond Reid, Jocelyn Becenti, Sheri Kvamme, Cynthia G. Whitney, Mathuram Santosham Author Notes

The Journal of Infectious Diseases, Volume 196, Issue 8, 15 October 2007, Pages 1211–1220, https://doi.org/10.1086/521833 Published: 15 October 2007 Article history ▼

2) Contact matrices led to different time-to-elimination

• Simulate transmission using different contact matrices¹

2) Contact matrices led to different time-to-elimination

- Simulate transmission using different contact matrices¹
- Measure time-to-elimination

3) Vaccine factors were the most influential parameters

We tested:

- Vaccine efficacy
- Vaccine coverage
- Waning rate
- Initial VT:NVT ratio
- Population susceptibility

1. Sage et al. (2021) PLoS ONE

- Features¹
 - Total contact

- Features¹
 - Total contact
 - Assortativity = -

Contacter age

- Features¹
 - Total contact
 - Assortativity

Time-to-elimination was highly dependent on contact patterns in children under 5

Time-to-elimination was highly dependent on contact patterns in children under 5

Our model recapitulated real-world VT colonization decline

VE_{col} — 0.33 — 0.60 — 0.77

- Our model recapitulated real-world VT colonization decline
- Contact matrices alone led to different time-to-elimination

- Our model recapitulated real-world VT colonization decline
- Contact matrices alone led to different time-to-elimination
- Vaccine factors were the most influential parameters

- Our model recapitulated real-world VT colonization decline
- Contact matrices alone led to different time-to-elimination
- Vaccine factors were the most influential parameters
- Contact rate & assortativity in under-5 were key features for time-to-elimination

- Our model recapitulated real-world VT colonization decline
- Contact matrices alone led to different time-to-elimination
- Vaccine factors were the most influential parameters
- Contact rate & assortativity in under-5 were key features for time-to-elimination

Assessing the effect of social contact structure on the impact of pneumococcal conjugate vaccines

O Anabelle Wong, Sarah C. Kramer, Daniel M. Weinberger, Matthieu Domenech de Cellès doi: https://doi.org/10.1101/2024.08.13.24311931

Thank you!

Parameters

Parameter	Interpretation	Value	Source
$\beta_V^{(i)}(=\beta_N^{(i)})$	Age-specific susceptibility to carriage acquisition	$\begin{array}{l} \beta^{(0,,4)} = 0.015 \\ \beta^{(5,,19)} = 0.004 \\ \beta^{(20,,59)} = 0.003 \\ \beta^{(60,,84)} = 0.005 \\ \\ ^{*\pm}20\% \text{ for high and low} \\ \text{population susceptibility} \\ \text{respectively} \end{array}$	[48]
$1/\gamma_i$	Age-specific average duration of carriage	See Supplementary Figure 1	Fitted to observed data (Supplementary Data 1)
$k_N(=k_V)$	Competition parameter: Effect of existing VT (NVT) carriage on acquiring NVT (VT) carriage	0.5	[36]
С	Fraction of co-carriers returning to C_V (C_N) upon reinfection with VT (NVT)	0.5	[15]
q	Relative infectiousness with each serotype for co-carriers	0.5	[15]
ϵ_V	Vaccine efficacy against carriage acquisition	33%, 60%, 77%	[40]
p_V	Vaccine coverage	50%, 90%	[10]
α_V	Waning rate of vaccine- conferred immunity	0, 0.1, 0.2, 0.3 per year	[42,43]
$f_{C}^{(i)}(0)$	Initial prevalence of carriers in age group <i>i</i>	$f_C^{(0,,4)}(0) = 0.5$ $f_C^{(5,,19)}(0) = 0.2$ $f_C^{(20,,59)}(0) = 0.1$ $f_C^{(60,,84)}(0) = 0.1$	[23], observed data (Supplementary Data 2)
$f_V(0), f_N(0)$	Initial proportions of VT-, NVT- carriers	$f_V(0): 0.2-0.8 f_N(0): 0.2, 0.4 where f_V(0) + f_N(0) \le 1$	Observed data (Table 2)

• Fit clearance rate (to extracted estimates from literature)

23 studies

• Fit clearance rate (to extracted estimates from literature)

 $\begin{array}{l} \textbf{23 studies} \\ \rightarrow \textbf{culture only} = \textbf{15} \end{array}$

• Fit clearance rate (to extracted estimates from literature)

23 studies

 \rightarrow culture only = 15

• Fit clearance rate (to extracted estimates from literature)

23 studies \rightarrow culture only = 15 \rightarrow take median only = 8

Formula: Duration $\sim \mathbf{k} + (\mathbf{b} - \mathbf{k})^* \exp(-\mathbf{c}^* \mathbf{Age})$

Parameters: Contact matrices (\tilde{m}_{ij})

Fig. 1 Modeling framework. Schematic representation of the workflow for modeling human-mixing patterns and infection transmission dynamics.

1) Verify model against real-world VT-decline

Location	Sample characteristics	Overall carriage (age 0, 1-4, 5-17, 18-39, 40-59, 60-84)	Initial proportions of VT-, NVT-carriers	Vaccine coverage
France [16]	Children 3–40 months attending daycare center	0.59, 0.59, 0.30, 0.10, 0.10, 0.10 [16,23]	0.75, 0.25 [16]	2004-05: 61% 2005-05: 74% 2006-07: 86% 2007-08: 90% [30]
UK [17]	Children 1–5 years attending primary care practices	0.49, 0.49, 0.21, 0.08, 0.08, 0.08 [17]	0.659, 0.341 [17]	90% [49]
Alaska, US [18]	Children 3 months–5 years attending primary care practices	0.38, 0.38, 0.30, 0.10, 0.10, 0.10 [18,23]	0.53, 0.47 [18]	60% [18]
Massachusetts, US [19]	Children 3 months-7 years attending primary care practices	0.28, 0.28, 0.28, 0.10, 0.10, 0.10 [19,23]	0.36, 0.64 [19]	85% [19]

2) Contact matrices led to different time-to-elimination

3) Effect of other factors

We tested:

- Vaccine efficacy
- Vaccine coverage
- Waning rate
- Initial VT:NVT ratio
- Population susceptibility

3) Effect of other factors

We tested:

- Vaccine efficacy
- Vaccine coverage
- B) Waning rate
- C) Initial VT:NVT ratio
- D) Population susceptibility

A neutral, S–C transmission model

- Neutral model : does not assume one serotype to have fitness advantage over the other
- To check neutrality, track fraction of VT-carriers among all carriers $(f)^1$

$$f = \frac{C_{VT}^{NV} + q \times C_{VT,NVT}^{NV} + C_{VT}^{V} + q \times C_{VT,NVT}^{V}}{C_{VT}^{NV} + C_{NVT}^{NV} + C_{VT}^{V} + C_{VT}^{V} + 2q(C_{VT,NVT}^{NV} + C_{VT,NVT}^{V})}$$