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Parasite-immune interactions

* Driving forces of parasite evolution and selection:

* Parasite-immune interactions + transmission environment
* Implications: vaccine design, prediction, control mitigation

* Examples:
* Respiratory pathogens (Covidl 9, flu, RSV...): evolution, predictability ??
* Effect of vaccination

* Malaria (A. Reed 2008):“Can imperfect vaccine drive evolution of

‘virulence’?




Evidence for clone interaction via cross-reactive serology
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* Cross-reactive samples: parasite (clones) —
serum (Ab)
* Transition: acute -> post-infection status
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Modeling work (snapshot)

Evolution of virulence by imperfect vaccine

Mackinnon et al,Vaccine, 2008

Strain-selection theory: immunity shaping parasite
population structure in host communities

Gupta, S, et al. Science 280, (1998)

Gupta, S. et al. Nat. Med. 2,437-442 (199¢) [ Population-based
Severins, M. et al, JRSI (201 1)

Buckee, C. O,, et al, PNAS 108, (2011). ABM

He, Q. et al, Nature Com, (2018)

Key concepts

* P genetic makeup
* P-immune interaction, cross-reactivity CR
* Fitness traits: V-T-P (virulence-transmissibility-persistence)

Interplay between V-T-P and their trade-off can drive
evolution of virulence
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Can these conceptual ideas be tested
with detailed models of host-parasite0-
immune biology ?




Malaria biology: life-cycle, immune evasion
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* Human: merozoite cycle (2 days) subject to immune control

* Mosquito: gametocyte uptake, mating and gene crossover

* Immune evasion via AV (antigenic variation)

* iRBC express Pf variable surface antigens (VSA) encoded by 50-
60 var-genes

* Each cycle has single expressed Var, can switch on the next cycle

* Vars stimulate specific Abs that clear clones with expressed Var

* Vascular sequestration and severe malaria due to Vars

V I PIEMP1 vanant antigens
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Multiple P. waves arising from VSA expression

Nature Reviews | Microbiology




ABM modeling highlights

* Genetically structured Pf: clone = collection of Vars

* Host agent state

* Target RBC, infected iRBC (w. expressed vars), gametocytes (all cell
populations/[uL]):
* Immunity
* Innate: febrile threshold for cumulative iRBC-load
* Adaptive:Var-specific Abs
* Processes:

* RBC:invasion/depletion/production
* iRBC: merozoite replication, AV-switch, gametocyte production

* Immunity: stimulation/clearing of (expressed) clones, immune loss

* Transmission: mosquito uptake/ inoculation (EIR), crossover




Genetically structured parasite (Pf)

* Natural Var-gene repertoire:
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In-host dynamics

In-host state for infecting clones {A,B,...}
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Typical infection history of a single 8-var clone
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Mixed infections: 4-clone case

Downstream CR

@

#1 winner ?
H#4 looser ?

Equally fit

Individual-TP outcomes

"single-clone TP" "A-mix TP"
1 49.1 36.7
2 41.1 38.6 - )
3 41.5 21.2 <- Competition !
a4 42.4 47.6 <-Cooperation !
Collective TP outcomes .
Single Pair Triplet Cumulative
[1, 2}]32.9 probability of
[11136.7|{1, 3} [16.9|{1, 2, 3} |13.4 — mosquito uptake
[21(38.6|11, 41 [35.6/{1, 2, 41 [31.9 -
[31(21.2)¢2, 31|17.2|{1, 3, 41 |16.9 {ihb{ijh{ijk
4y |a7.6|{2, 41 [37.6|{2, 3, 4} ]17.2 —
[3, 4} |21.2

TP= AUC - shaded: {l,3}-overlap

Complex TP-outcomes of mixed infections
not predictable from clonal makeup (CR)




Evolution and selection in host ABM ensembles

Two-level selection: within-host (mixed infections) + community transmission
I.  Primary selection: naive host ensembles

Il. Transmission:
 serial passage in SP-lines
* Host communities in mosquito environment

Basic questions

* Which clones or teams (cliques) get selected ?

* Role of V-TP phenotypes!?

* Role of transmission environment (EIR-intensity, mosquito population/ behavior)

* Control implications



Primary selection

|dentify most fit (TP) individual clones and cooperating teams in mixed contests

Possible setup:

* S-variant clones o
* Clone-pool: 200 random draws {S;} from gene-space {... OOQQQ v}

* Nested mixed contests: quintuplets-> quadruples->... -> doublets

e Type | # contests
Contest outputs:
double | 28490 | SS-= {si,sj}
triple 49835 SSS * Individuals-{TP;}
quadrup | 25000 SSSS » couple: {TP;}
o2 quintup 5000 SSSSS + triplets: {TP,,}




Statistical analysis : fitness (TP) loss in mixed contests

Single-clone infections: Mixed-infection ensembles
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Statistical loss and gain in mixed ensembles
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Resilient teams in contest mixtures.
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More evidence of fitness gain in mixed infections

==

TP 1] ijk
* Expanded ‘couple->triple’ (ij)—){(ijk):kzl,Z,...} 7 single {Ti’Ti} {Ti’Ti’Tk}
omixed| Ty [T T T T

Can triple co-infection improve survival: Tij < Tij ?

For most couples (of 200 core) 5-30% expanded triplets improve TP

Hence 5-30% chance improve survival via increased mixing



Serial passage (SP) in naive host lines

Donor Recipient

f=i=i= =]

Strain mixture {S, ,S, , ...} injected in donor #I

Transmissible strains (gametocytes) collected on passage day d; goes to recipient

Repeated over multiple cycles, with fixed or random d;, (EIR = transmission intensity)

Clonal makeup collected over multiple passage cycles
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Evolution of SP-ensembles with random infusion

Ensemble of SP-lines with 100-200 transmission cycles (random dP)
Initialized with 10 best-quantile of primary selection
Random infusion of the remaining 190 on each SP-cycle

Cooperating cliques

Typical SP-line of 100 cycles
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Conclusions

= Methodology: ABM with genetically structured parasite and detailed in-host biology (target-
parasite-immune interactions). Flexible, computationally efficient

* Intrinsic and derived clonal phenotypes: virulence (RBC), TP (transmission potential

Selection in naive host ensembles, and SP-transmission lines; fitness (TP) cost of competition
= Key drivers of selection: clonal cross-reactivity, transmission intensity (EIR, SP frequency
= Evidence of cooperative behavior in host ensembles and transmission lines

* Future work:
= Exploration of cooperating clusters (cliques) in extended multi-clonal genotype spaces
= Evolution and selection in coupled human-mosquito systems with crossover

* Implications of cooperative (persistent) cliques for monitoring, control, vaccine strategies

= Reference: D. Gurarie, bioRxiv 539676; doi: https://doi.org/10.1101/539676. 2019.
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