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Mathematical modelling techniques allow us to build flexible representations 

of various physical and biological phenomena

Many real-world systems feature some element of randomness, so use of 

stochastic models can help to better represent this

Models may have a large number of dimensions; model reduction techniques 

allow us to significantly simplify complex systems. 

Project Overview

Motivation



Build a model representing a disease with multiple strains (or multiple 

diseases in the same population)

Apply the Stochastic Averaging Principle to obtain a reduced model

Verify that the models agree in the large-number limit

Project Overview

Aims and objectives
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Preliminaries

How to build a mathematical model

Kermack-McKendrick SIR Model:

• Susceptible individuals can become infected 

through interaction with an infected individual 

at rate β

• Infected individuals have the disease and 

recover after a period of infection at rate γ

• Recovered individuals can no longer be 

infected



Preliminaries

How to build a mathematical model

Ordinary Differential Equations 

(ODEs):

• ODEs are a key tool for 

mathematical modelling

• We use them to describe 

dynamical systems (evolving in 

time)

• ODEs are deterministic



Preliminaries

How to build a mathematical model

Ordinary Differential Equations 

(ODEs):

• ODEs are a key tool for 

mathematical modelling

• We use them to describe 

dynamical systems (evolving in 

time)

• ODEs are deterministic
Figure 1: A plot of the solutions to the SIR ODE model. Parameter 

values used are β=0.4, γ=0.04, S(0)=97, I(0)=3, R(0)=0. 



Preliminaries

How to build a mathematical model

Continuous Time Markov 

Chains (CTMC):

• CTMCs are one way of 

accounting for randomness 

• They describe processes 

that change according to 

some probability

• CTMCs are stochastic

State Vector:

Intensity Functions:

Generator Equation:



Preliminaries

How to build a mathematical model

Continuous Time Markov 

Chains (CTMC):

• CTMCs are one way of 

accounting for randomness 

• They describe processes 

that change according to 

some probability

• CTMCs are stochastic
Figure 2: A plot of a single realisation of the SIR CTMC model. 

Parameter values used are β=0.4, γ=0.04, S(0)=97, I(0)=3, R(0)=0. 



Preliminaries

How to build a mathematical model

Convergence:

• If our two models fulfil certain 

criteria, then we have that the 

stochastic model converges to 

the deterministic model as the 

system size becomes large
Figure 3: A plot comparing the solutions of the deterministic  and 

stochastic SIR models. Parameter values used are N=100, β=0.4, 

γ=0.04, S(0)=97, I(0)=3, R(0)=0. 



Preliminaries

How to build a mathematical model

Convergence:

• If our two models fulfil certain 

criteria, then we have that the 

stochastic model converges to 

the deterministic model as the 

system size becomes large
Figure 4: A plot comparing the solutions of the deterministic  and 

stochastic SIR models. Parameter values used are N=1000, β=0.4, 

γ=0.04, S(0)=97, I(0)=3, R(0)=0. 
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Two-Strain Epidemic Model

Two-Strain Model

• We have two strains of a 

disease, 1 and 2

• There is a common pool of 

susceptible individuals

• We assume no co-infection

• We have partial cross-

immunity



Two-Strain Epidemic Model

Possible Applications

• Models of this type 

originated from the study 

of influenza, bacterial 

infections and parasites

• More recent examples 

include the emergence of 

disease variants, such as 

the Delta and Omicron 

strains of COVID-19



Two-Strain Epidemic Model

Two-Strain ODE Model



Two-Strain Epidemic Model

Two-Strain CTMC Model State Vector:

Intensity Functions:

Generator Equation:



Two-Strain Epidemic Model

Convergence

Figure 5: A plot comparing the solutions of the deterministic (dashed) and 

stochastic (solid) two-strain models. Parameter values used are 𝑁 =
1000, 𝛽1 = 0.6, 𝛽2 = 0.4, 𝛾1 = 0.1, 𝛾2 = 0.2, 𝜎1 = 0.1, 𝜎2 = 0.1.



Two-Strain Epidemic Model

Convergence

Figure 6: A plot comparing the solutions of the deterministic (dashed) and 

stochastic (solid) two-strain models. Parameter values used are 𝑁 =
10000, 𝛽1 = 0.6, 𝛽2 = 0.4, 𝛾1 = 0.1, 𝛾2 = 0.2, 𝜎1 = 0.1, 𝜎2 = 0.1.
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Stochastic Averaging

Multiscale Problem

• We are interested in a 

scenario where the rates 

of infection and recovery 

of one strain are much 

faster than the other

• This assumption will allow 

us to apply the 

stochastic averaging 

principle to derive a 

reduced model



Stochastic Averaging

Possible Applications

• Two-strain model of 

tuberculosis

• Vector-borne illnesses 

and STDs

• Cancer therapy

• Strain-specific vaccination



Stochastic Averaging

Let 𝑇=[0,∞). We want to pick a parameter regime in which 

the rates of infection and recovery of the second strain are 

exponentially faster than those of the first strain. To achieve 

this, we pick the following parameter scalings 

Averaging Principle



Stochastic Averaging

We then define the scaled process

With intensity functions

Averaging Principle



Stochastic Averaging

The process is then a CTMC with generator

for bounded, continuous functions 𝑓: ℝ+
3 × ℕ2 → ℝ and

 𝑦 = 𝑦𝑆, 𝑦𝐼1
, 𝑦𝑅1

, 𝑦𝐼2
, 𝑦𝑅2

∈ ℝ+
3 × ℕ2

Averaging Principle



Stochastic Averaging

The form of the generator ℒ𝑛 shows that the infected 

and recovered variables for the second strain jump 

rapidly, while those of the first strain have approximately 

deterministic dynamics, according to the average 

dynamics of the second strain as 𝑛 → ∞.

Therefore, we define a linear operator to describe the 

fast process

for fixed 𝑣 = 𝑦𝑆, 𝑦𝐼1
, 𝑦𝑅1

 and for bounded 𝑔: ℕ2 → ℝ.

Averaging Principle



Stochastic Averaging

This operator generates an ergodic Markov process, 

particularly a birth-death process which, for any 𝑣 ∈ ℝ3 , 

admits a unique stationary distribution 𝜋𝑣 𝑧 .

Therefore, we expect the slower process 𝑌𝑆
𝑛

, 𝑌𝐼1

𝑛
, 𝑌𝑅1

𝑛
 

to converge to the deterministic 𝑦𝑆, 𝑦𝐼1
, 𝑦𝑅1

 as 𝑛 → ∞. 

That is

Averaging Principle



Stochastic Averaging

Here, 𝑦𝑆, 𝑦𝐼1
, 𝑦𝑅1

 is the solution to the following system of 

Ordinary Differential Equations (ODEs)

Where the ത𝑦𝐼2
 and ത𝑦𝑅2

 are determined by the averaged 

values of the fast process. 

Averaging Principle



Stochastic Averaging

Figure 7: Comparisons 

of the solutions of the 

deterministic (dashed) 

and stochastic (solid) 

reduced two-strain 

models.  Parameter 

values used are 𝑁 =
1000, 𝛽1 = 0.6, 𝛽2 =
0.4, 𝛾1 = 0.1, 𝛾2 = 0.2,
𝜎1 = 0.1, 𝜎2 = 0.1, and 

𝛼𝑖 = 0 for each 𝑖 =
1,2,3,4,5 (upper plot), 

𝛼𝑖 = 0.1 for each 𝑖 =
1,2,3,4,5 (lower plot).  

Simulations



Stochastic Averaging

Simulations

Figure 8: Comparisons 

of the solutions of the 

deterministic (dashed) 

and stochastic (solid) 

reduced two-strain 

models.  Parameter 

values used are 𝑁 =
10000, 𝛽1 = 0.6, 𝛽2 =
0.4, 𝛾1 = 0.1, 𝛾2 = 0.2,
𝜎1 = 0.1, 𝜎2 = 0.1, and 

𝛼𝑖 = 0 for each 𝑖 =
1,2,3,4,5 (upper plot), 

𝛼𝑖 = 0.1 for each 𝑖 =
1,2,3,4,5 (lower plot).  
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Future Plans

Short Term      Medium Term          Long Term

We want to investigate the 

application of large 

deviations theory to our 

models

Large Deviations

We can quantify the 

fluctuations of the reduced 

model using a functional 

central limit theorem

FCLN Publish

Submit the work outlined in 

this presentation to an 

appropriate journal  
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Thank you for 
listening

Email: dan.harborne@nottingham.ac.uk
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