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Fig 1. Box plot showing declining burden of malaria prevalence in Tanzania. Data obtained from SMPS survey 2015-2021



Malaria heterogeneity
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Fig 2. Maps demonstrating heterogeneity of malaria in Tarime district in Tanzania
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Health Facility

Pros

Spatially and temporally granular*

Easily accessible -HMIS

Real time-
monitoring of disease trends and timely i
nterventions.

Cons

Catchment HS disease burden only

Not representative of the population

Aggregated
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Population-based surveys

Pros

Captures disease burden in community.

Standardized measurement, unbiased

Cons

Limited
in spatial and temporal granularity

Cost, labour and time intensive

Restricted to pregnant
women & 1inder R's

map

School-
Malaria Parasiteamia surveys

Pros

Spatially granular- make

decisions at ward level.

Rapid

& cheaper alternative to population
-based surveys

Shift in malaria-burden
towards older children.

Cons

Incompleteness-sick
children may miss school,
underestimating risk.

Cross-sectional
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Fig 3. Study design flow chart; Chacky et al 2019; Nationwide school malaria parasitaemia survey in public primary schools in Tanzania
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Study objective
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Fig 4. Observed malaria prevalence at surveyed locations grouped by year.
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Fig 5 Swte of dynamic and static covariates
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Spatiotemporal model

A Bayesian framework was used to model the spatial and temporal distribution of malaria prevalence at the

ward level. Malaria prevalence, P at the surveyed ward j (j =1...n), inyear k (k= 1...m) and the number of
positive pupils, Njk in ward j and year k was assumed to follow a binomial distribution

Y ~Binomial(P,N ;).

Malaria prevalence was then linked to linear predictors through a logit linear regression model:

logit (P )=BotX; Btutv+y,
Where [5, - intercept

X - matrix of covariates

[ - regression parameters

uj - spatial random parameter
Y. - temporal random effect

V;-independent and identically distributed random effect (i.i.d).

Geostatistical analysis of malaria prevalence was run using the R-INLA package.
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Fig 6. Predicted malaria prevalence by ward grouped by year
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Fig 7. Predicted malaria prevalence at Gumbiro ward



Model validation

Correlation plot; Observed vs. Predicted
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Fig 8. Scatter plot of predicted and observed malaria prevalences
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Conclusion

* The observed prevalence among school children showed marked variation
(heterogeneity) at regional and sub-regional levels across the country.

 This work demonstrated the potential of SMPS data to identify different epidemiological

strata and potentially provide the malaria program with evidence guide malaria
interventions at micro-planning units in Tanzania.
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* This model did not integrate intervention data as a covariate and may have biased the
estimations of our model.

* School absenteeism- Children may have missed school during the sampling day due to

malaria, dropouts and some regions may have had lower enrolment rates. This would
have led to an under estimation of malaria risk in that region.

* The SMPS, is a cross-sectional surveys and therefore captures malaria infection

prevalence only at a certain time point and seasonal variations of malaria will inevitably
be missed which may lead to under/over-estimating malaria risk.
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Future work

* There's need to explore other geospatial modeling techniques to compare predictive
performance with the current model.

* We did not test the goodness of fit between different models, this process is underway.

* Representativeness of SMPS data - It is not known how well school prevalence reflects

population prevalence and therefore using SMPS data provides an opportunity to
explore this relationship.

14
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