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Overview

® In 2023, many African countries began the tedious process of
updating their National Strategic Plan for malaria.

® As part of this plan, country programs require to have a clear
understanding of the spatial distribution of malaria and how it has
changed over time.

® In elimination settings such as Senegal, the program do not run
malaria surveys because there are too few cases. Instead, they only
rely on their surveillance system-incidence.

The purpose of this work

was to explore the fine-scale heterogeneity of malaria transmission in
Senegal to support decision making.
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Data used: Routine Health Facility (HF) Data

Clinical case counts from HF can become a powerful data source for
mapping disease burden especially in elimination settings. However, often
there are challenges with facility-based data:

® challenge 1: missing information on HF catchments: unknown areal
footprints and population denominators,

® challenge 2: uncertainties regarding treatment seeking rates:
particularly urban/rural differences,

® challenge 3: missing information on the total set of facilities: e.g.

private facilities may not report, and their locations and populations
served may be unknown.
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Data from DHIS2 used

® Number of malaria cases for all ages from 1251 health facilities.

e A total of 52.2 % of the health facilities was geolocated.
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Geostatistical model

The model for incidence data combines spatial covariates with a spatial
(Gaussian process) random effect: designed for measurements taken at
known locations of negligible area (point-level data), and population
denominator into a Negative binomial sampling distribution
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Environmental and socio-demographic covariates
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Al: Aridity index; Elevation: Multi-error-removed improved-terrain; TWI: Topographic wetness index; PET: Potential
evapotranspiration; TSI: Temperature suitability index for P.falciparum; Slope: Elevation as measured by the shuttle radar
topography mission (SRTM); TCB & TCW: Tasselled cap brightness & wetness; LST: Land surface temperature.
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Catchment model (challenge 1)

® The greatest challenge with facility based case data is determining the
catchment population associated with the case estimates.

® Evidence shows that people do not always attend the facility that is

nearest.
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Catchment model (challenge 1)

A catchment model assigns a probability (Cj_,;) that the people in each
household (j) will seek treatment at each HF (/).

observed: yin¢ inc
odel. Cj*’i ﬁ yZ + ,
858
ylnc ﬁ | :
73| y .
B w Can s ﬁ
o ﬁ T Caz ﬁ
ﬁ’ 2 CH, 2
¢ 2
R

EEEeGEEEGEEE—— DM gymposiom et A By G



Catchment model (challenge 1)

® Some facilities may be preferred over others because of the relative
cost of care or reputation.

® Individuals in pixel j who seek treatment, the proportion seeking
treatment at HF / is modelled as proportional to the HF
attractiveness M; (a per-facility parameter) divided by the square of
the travel time to that HF

~ t(pixel; — HF)=2M; if t(pixel; — HF;) <180 mn
Coixel;—HF; =

0 otherwise.

The proportion seeking treatment at facility / was

Cpixel,—HF;

Cpixelj—>HF,- = Nar &~ .
Zk:O pixelj—>HFk
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Catchment model (challenge 1)

To fit this model with 'masses’ it's helpful to know the total number of

cases (malaria + non-malaria) seen by each HF; but priors can be used to
represent uncertainty if that information is unavailable

observed: yimc, yiot

model: C;_;
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Geostatistical framework with catchment
/ catchment model (sum over pixels)

yiinc ~ NegBinom (Z Cj; X ingj X pOpj)
J

log (inc;) = f(latj, long}-) + X/ +c

[~ GPy
¢, p,c,M; ~m

k_/ free parameters of the catchment model

get their own priors

The expected incidence at each HF is obtained by summing the incidence
over all pixels weighted by the catchment model.
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Treatment seeking model (challenge 2)

® Generally we will want to allow for the possibility that not everyone
with a fever will seek for a treatment.

® The proportion of the population at a given location (j) that would
seek treatment for fever in the nearest formal healthcare system was
modelled as in (Arambepola et al., 2021)

a
1+ exp(ot(pixel; = HF pearest))

TS +8 (a+p<1),

where parameters «, o and 3 were chosen based on the threshold
values of the maximum and minimum possible treatment-seeking
proportions.
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Geostatistical framework with treatment seeking

adjustment (challenge 2)

Treatment seeking probability

a— treatment seeking
yI1¢ ~ NegBinom (z Cj; X ing; X popj X TS]) probability map
Jj

log (ing;) = f(latj, longj) +X/B+c

f ~ GP,
¢.B.e, My ~m

One way to do this is to introduce a previously estimated treatment
seeking map (e.g. from DHS survey data).
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Main result

® Prediction of malaria risk at 1 km of resolution in pixel level.

® Adjusted estimations from the model with catchment and treatment
seeking to represent population level load.
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Comparison between raw data and prediction by district
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Use of the prediction maps
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Model limitations

Data

—Challenge 3: Lack of consensus on a master facility list with validated
GPS coordinates.

—Population remains stationary within the model framework.

Assumptions

—Our models are based on various assumptions (stationary Gaussian
field, linear predictor (non-linear effect of covariates excluded),
simple 'gravity’ model considered).

—Our models aim to predict rather than explain, which implies a
compromise between predictive performance and interpretability (e.g., the
interpretation of covariate coefficients is not straightforward).
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Conclusion

A classical geostatistical framework was used and was extended by a
catchment population and treatment seeking models.

A series of annual 1km pixel risk maps were produced and presented
to the Senegal NMCP.

We further have developed a work about influential dominant
covariates by pixel and admin level.

Monthly risk maps work is in development.
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