# Assessing the potential impact of Men5CV meningococcal vaccine on transmission dynamic of meningitis: An Agent-Based Modelling Approach.

Wangari Mutuku, Steve Cygu, Samuel iddi, Lawrence Nderu, Emily Akinyi, Nafiu Hussaini

#### **INTRODUCTION**



# **Meningitis Transmission Dynamics**

### **Overview of Meningitis Transmission**

- Bacteria transmitted via respiratory droplets (coughing, sneezing).
- Close contact in overcrowded environments (e.g., schools, markets) facilitates rapid spread.

## **Key Factors Affecting Meningitis Spread**

- Population density.
- · Vaccination rates.
- Climatic factors (e.g., dry, dusty conditions).

## **Research Gaps**

- Recurring meningitis outbreak in Nigeria despite ongoing vaccination efforts where existing epidemiological models fail to capture the complexities of meningitis
- Inadequate representation of individual behavior since most studies have used compartmental models which assume homogenous mixing of individuals.
- Impacts of environmental and social factors since current models that have been used did fail to integrate things like seasonal climatic changes

# **Research Questions**

#### Objective

Estimate the proportion of the population or sub-group should be vaccinated for us to achieve Herd immunity for meningitis in Nigeria by 2030.

### **Research questions**

- How different Men5CV vaccination coverage levels will impact the overall transmission dynamics of meningitis.
- What is the threshold for achieving herd immunity in Nigeria by 2030?
- What is/are the best vaccine strategies (es) to avert new infections?
- Which is/are cost-effective strategies (es) for administering Men5CV vaccine?

## **Model structure**



# **Methods**

# Model structure (SVEIDRS)

The ABM model was used to: Model the transmission dynamics, Assessing impact of vaccination and Assessing impact of targeted

vaccination on disease transmission

## Settings

- Data from the WHO site and literature are used
- We stratified the population based on age.
- Target population The general population of Nigeria all assumed to be susceptible
- Subgroups Age-specific (Aged 9 to 18 months; 1 to 19 years), High-Risk, Geographical regions, Socio-economic status, etc.
- **\* Time Horizon** 6 years (2024 2030)

# **Model Implementation**

#### **Interventions -**

- Vaccine implementation with varying coverage rates/schedules
- Vaccine distribution strategies and prioritization in subgroups

## Comparators

- Baseline
- Comparison between different coverage levels and strategies

# Heterogeneity

Impact of the heterogeneous population under study on meningitis transmission dynamics

# **Model implementation**

Model

Literature SVEIDRS

Implementation

starsim python package

#### **Initial conditions**

dur\_exp\_inf = 2, # (days) dur\_exp\_rec = 2, # (days) dur\_inf = 14, # (days) dur\_rec = 7, # (days) p\_death = 0.05, # (prob of death) p\_symptoms = 0.4, # probability of showing symptoms init\_prev = 0.005, # Init cond beta = 0.08, # Init cond rel\_beta\_inf = 0.5, # Reduction in transmission for I versus E waning = 1/(365\*3), imm\_boost = 0.001

| Parameters                                       | Value   |
|--------------------------------------------------|---------|
| Contact rate                                     | 0-0.9   |
| Per capita infection rate by Exposed             | 0.74    |
| Per capita infection rate by Infected            | 0-0.85  |
| Recovery rate of infected                        | 0.43    |
| Recovery rate of Exposed                         | 0.8     |
| Disease-induced death rate                       | 0.495   |
| Proportion of Exposed that progress to infection | 0.3     |
| Rate of progression from Exposed to Infected     | 0.00022 |
| Lost of immunity                                 | 0.851   |
|                                                  |         |

## Results







Estimated impact: 27330 (90% CI: 24711, 29317) infections averted (Prob: 50.0%)



#### **Targeted age-group (9 - 18 months)**

Estimated impact: 1368 (90% CI: 5, 1996) infections averted (Prob: 50.0%)







# **Discussion and Limitation**

## Discussion

- There was a significant reduction in disease incidence and transmission rates through vaccination.
- Different vaccination coverage levels and strategies in controlling meningitis outbreaks was insignificant.
- Lack of variability access to age-groups suggest that other factors may play a significant role in the disease transmission dynamics.

## Limitations

- Limited baseline data on the contact patterns of the people in Nigeria
- Impact of social network effects and peer influence on vaccination decision

# **Conclusion and Policy Implication**

- The public health system should focus on increasing vaccination coverage among the susceptible population to reduce cases
- Target Vaccination campaigns should be implemented to reach a specific population that is more vulnerable
- Continuous surveillance and monitoring of the disease incidence are crucial to track the impact of vaccination which will lead to the informed decision-making process

