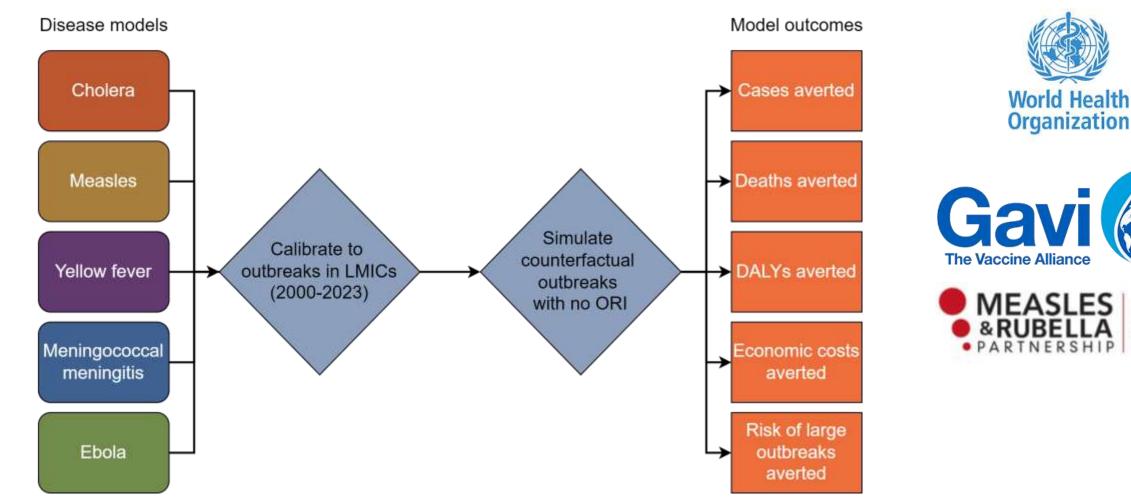


Estimating the historical impact of outbreak response immunization programs across 210 outbreaks in low- and middle-income countries


Measles, cholera, yellow fever, meningococcal meningitis, Ebola

01 October 2024

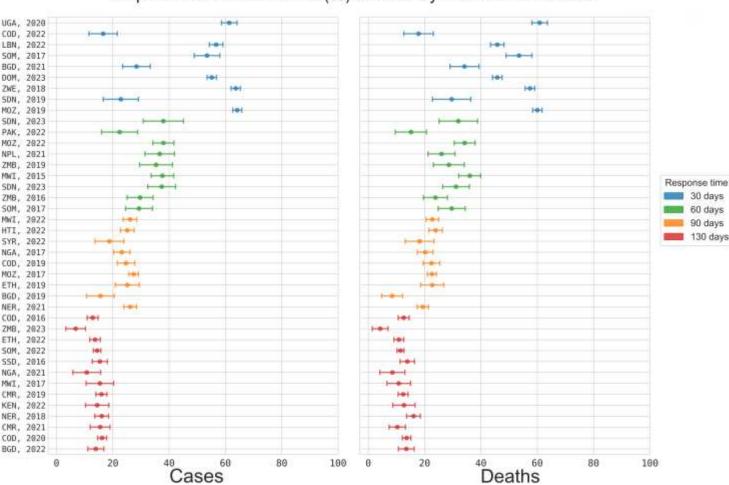
Overview

 Evidence is needed to quantify the value of vaccine stockpiles for outbreak response immunization (ORI) to inform future investment by Gavi, the Vaccine Alliance and other funders

A world

free from measles and rubella

Methods

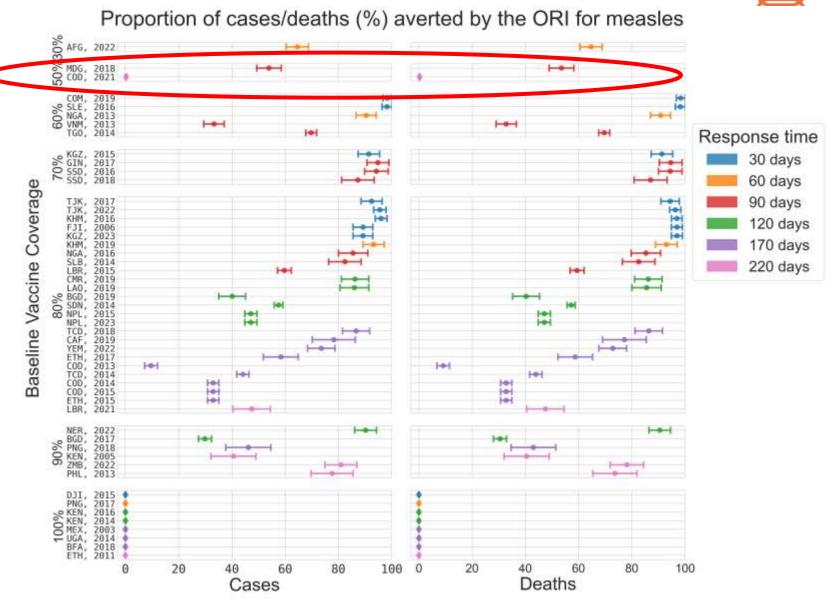

- Model choice and implementation:
 - Agent-based models;
 - Used *Starsim* for five disease models with consistent characteristics and implementations.

Disease	Key features					
Measles	Highly infectious, routine vaccination, primarily in young children					
Cholera	Environmental transmission, WASH programs					
Yellow fever	Vector-borne transmission, routine vaccination, impacted by temperature/rainfall					
Meningococcal meningitis	Highly seasonal, high asymptomatic presentation, two vaccine types					
Ebola	Very deadly, contact tracing key part of response, transmissible from corpses					

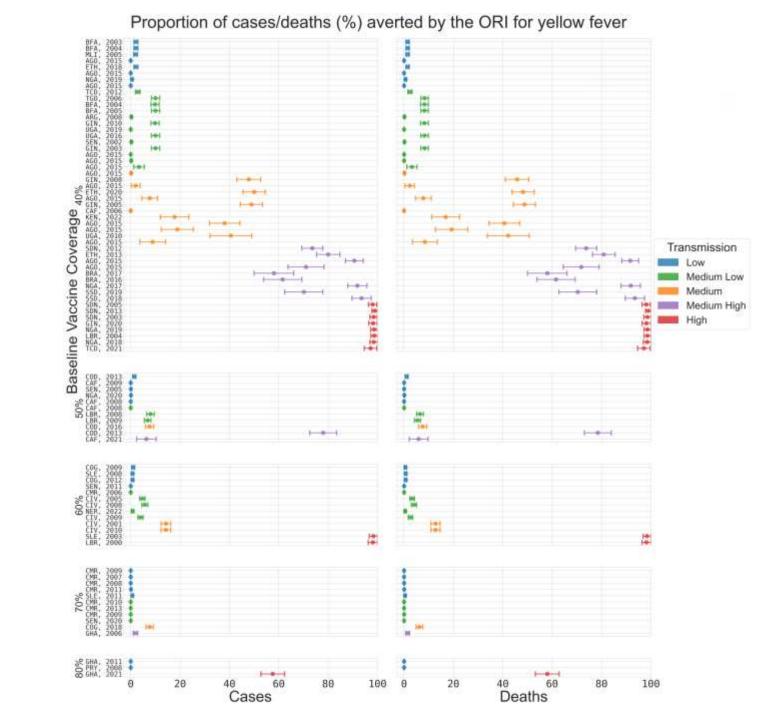
Cholera

ORI impact

- Error bars coloured by assigned response time.
- ORI found to have higher impact in settings with faster response times.
- In data, cholera outbreaks typically last 4-6 months unless very large.


Proportion of cases/deaths (%) averted by the ORI for cholera

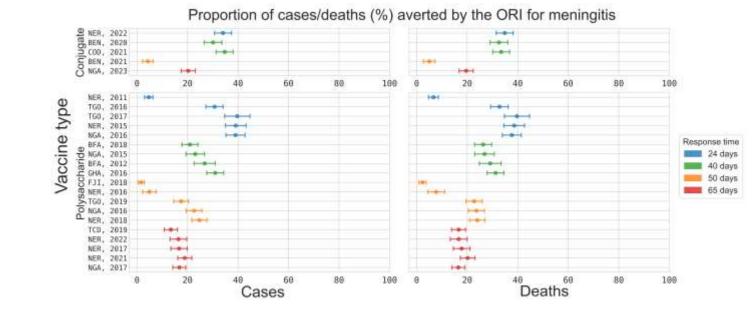
Measles

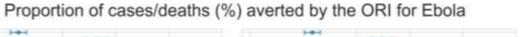

ORI impact

- Error bars coloured by assigned response time.
- Outbreaks grouped by baseline vaccine coverage.
- ORI found to have higher impact in settings with lower baseline coverage.
- Highlights the importance of routine vaccination campaigns.

Yellow Fever ORI impact

- Error bars coloured by transmission level (effect of rainfall/temperature).
- Outbreaks grouped by **baseline** vaccine coverage.
- ORI found to have higher impact in settings with higher transmission level.

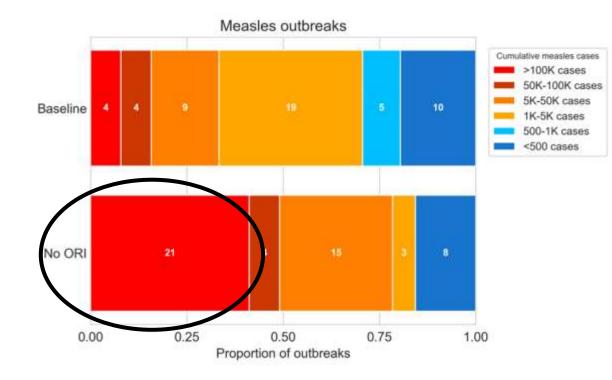

esponse tim

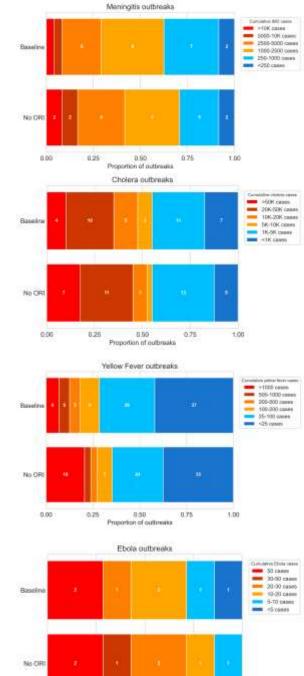

ORI impact - meningitis

- Error bars coloured by assigned response time.
- Outbreaks grouped by vaccine type used in response.
- ORI found to have **higher impact** in settings with **faster response times**.

ORI impact - Ebola

- Error bars coloured by assigned response time.
- ORI impact varied by outbreak, but even without vaccine response any counterfactual would be constrained by contact tracing and quarantine/isolation.





Impact on outbreak size

- Across 5 diseases, presence of ORI reduced observed outbreak size
- For cholera, measles, and yellow fever, presence of ORI reduced frequency of large outbreaks

0.25 0.50 0.75 1.00 Proportion of outbreaks

8.00

Total impacts

Disease	Years	# outbreaks with ORI <i>and</i> sufficient data	Observed cases	Observed / estimated deaths	Estimated cases averted	Estimated deaths averted	Estimated DALYs averted (undiscounted)	Estimated costs averted (discounted; 2023 US\$)
Ebola	2018-2022	7	246	121	820 (633 – 1007)	381 (292 – 469)	16, 616 (12,824 - 20,409)	6.72M (5.23M – 8.21M)
Measles	2001-2023	51	2.15M	18,660	4.01M (3.95M – 4.07M)	20,005 (19.6k – 20.4k)	1.27M (1.24M – 1.29M)	710M (692M – 728M)
Cholera	2000-2023	40	800,019	9259	283k (273k – 292k)	5215 (4879 – 5551)	220k (205k – 236k)	156M (145M – 166M)
Yellow Fever	2000-2023	88	29,815	2988	1.50M (1.42M – 1.58M)	300k (284k – 316k)	13.0M (12.2M – 13.8M)	30.7B (26.5B – 34.9B)
Meningitis	2012-2023	24	60,626	4080	21,261 (20,268 – 22,254)	1599 (1404 – 1794)	113k (104k – 122k)	96.6M (86.6M – 106.6M)
Total	2000-2023	210	3.04M	35,108	5·81M (5·75M – 5·87M)	327K (317k – 338k)	14·6M (14·1M – 15·1M)	\$31·7B (\$29·0B – 34·4B)

₿

Summary

- Over 210 outbreaks of 5 diseases, presence of ORI averted:
 - 5.81M cases;
 - 327k death;
 - 14.6M DALYs;
 - US\$31.7B economic costs
- ORI impact was higher with faster response times, confirming the importance and benefits of rapid responses.
- ORI was found to have higher impact in setting with lower baseline immunity, highlighting the importance of routine vaccination campaigns.
- The presence of the ORI reduces the average size of the outbreaks, and the risk of large outbreaks.

Thank you for listening!

Thank you to my co-authors: Alina Muellenmeister, Gabrielle MacKechnie, Stefanie Vaccher, Tewodaj Mengistu, Dan Hogan, Romesh Abeysuriya, Nick Scott

Additional thanks to:

Elizabeth Lee, Andre Arsene Bita Fouda and team, Mark Jit, Han Fu, Caroline Trotter, Katy Gaythorpe, Keith Fraser, Antara Sinha, Allyson Russell, Cassandra Quintanilla, Francisco Luquero, Marguerite Cornu, Rachel Sacks-Davis, and Jane Greig for providing expert advice and data as we developed our disease models and analysis methods.

Preprint available

Feel free to send any questions to: dominic.delport@burnet.edu.au

