A mechanistic model and web-based tool for estimating the potential impact of water, sanitation, and hygiene interventions, accounting for contextual and intervention factors

University of Michigan October 1, 2024

ROLLINS SCHOOL OF PUBLIC HEALTH

Water, sanitation, and hygiene (WASH) interventions have the potential to reduce the burden of diarrheal disease...

... but there has been substantial heterogeneity and multiple large trials with modest-to-null results.

Wolf et al., 2022. *The Lancet*. Meta-analysis of the effectiveness of hygiene interventions

Efficacy	Do the interventions work?

Efficacy	Do the interventions work?
Compliance	Are people receiving and using the interventions?

Efficacy	Do the interventions work?		
Compliance	Are people receiving and using the interventions?		
Community coverage	What % of the community is covered by interventions?		

Efficacy	Do the interventions work?
Compliance	Are people receiving and using the interventions?
Community coverage	What % of the community is covered by interventions?
Completeness	How much of the transmission is not intervened on?

Magnitude of transmission pathways

\M/ater	Hands &	All other
vvalci	Fomites	Another

Efficacy	Do the interventions work?			
Compliance	Are people receiving and using the interventions?			
Community coverage	What % of the community is covered by interventions?			
Completeness	How much of the transmission is not intervened on?			
Baseline WASH conditions	Did participants already have WASH infrastructure?			

Efficacy	Do the interventions work?
Compliance	Are people receiving and using the interventions?
Community coverage	What % of the community is covered by interventions?
Completeness	How much of the transmission is not intervened on?
Baseline WASH conditions	Did participants already have WASH infrastructure?
Baseline disease conditions	Does the effectiveness depend on the disease burden?

Intervention factors are modifiable by the investigators

Contextual factors depend on the location

Many of these factors could be driven by differences in pathogen distributions

• Different pathogens use different transmission pathways to different degrees, and interventions have different efficacies

Many of these factors could be driven by differences in pathogen distributions

• Different pathogens use different transmission pathways to different degrees, and interventions have different efficacies

	Basse, The Gambia	Mirzapur, Bangladesh	Karachi (Bin Qasim Town), Pakistan	
0-11 months				
Number of case-control pairs	258	293	284	
Rotavirus	23.0% (18.8-29.1)	23.4% (18.9–28.7)	27.0% (22.7-33.5)	
Adenovirus 40/41	9.6% (4.9-15.9)	8.3% (4.7-13.9)	7.2% (0.9–10.6)	
Cryptosporidium spp	11.5% (4.6-16)	1.2% (0.1-2.7)	10.4% (5.1–16-1)	
Shigella spp or EIEC	7.5% (3.9-12.9)	15.8% (12-20.4)	13.8% (9.7–19.7)	
C jejuni or C coli	*	12.3% (7.6–19.8)	7.0% (0–17.1)	
ST-ETEC	5.5% (1.8-9.7)	2.0% (0.5-3.9)	12.2% (8.9–17.6)	
Norovirus GII	4.4% (1.8-11.1)	1.8% (0.2-5.3)	2.7% (0-6.2)	
tEPEC	2.7% (0-5.7)	0.3% (0-2.6)	2.1% (0-5.1)	
Sapovirus	1.0% (0-5.4)	1.1% (0-3.4)	4.4% (0-2-11.1)	
Astrovirus	0.7% (0-4.4)	1.4% (0-3.9)	3·3% (0·1–7·6)	
V cholerae	*	0.6% (0-1.7)	5.6% (2.3-8.8)	

The Global Enteric Multicenter Study found substantial differences in the distribution of pathogens at different sites. Mechanistic transmission modeling can aid in predicting and generalizing WASH trial outcomes. Our transmission model accounts for people using and not using interventions...

... a shared environment ...

... and multiple transmission pathways.

We also account for intervention compliance and baseline WASH conditions.

We illustrated the sensitivity of intervention effectiveness to intervention and contextual parameters in two scenarios.

	Scenario 1	Scenario 2
Efficacy	Lower (75%)	Higher (83%)
Compliance	Higher (75%)	Lower (50%)
Community coverage	Lower (11%)	Higher (75%)
Completeness	Higher (75%)	Lower (35%)
Baseline WASH conditions	Higher (25%)	Lower (0%)
Baseline disease conditions	Lower (6.4%)	Higher (20.0%)

These scenarios were chosen to have 50% effectiveness.

Sensitivity to one parameter depends on the other parameters

Change in intervention effectiveness (percentage points)

At the Scenario 1 baseline (A), effectiveness is highly sensitive to coverage and less sensitive to compliance

-50 -25

Change in intervention effectiveness (percentage points)

But at another point with 50% effectiveness (B), effectiveness is highly sensitive to compliance and less sensitive to coverage.

Change in intervention effectiveness (percentage points)

And these sensitivities further depend on the other intervention and contextual factors.

Indeed, in some cases, a combination of factors could increase effectiveness in one scenario but *decrease* it in another.

Thus, it is important project an intervention's effectiveness in a specific context.

We have created a **publicuse tool** to facilitate intervention planning for *local contexts.*

https://umich-biostatistics.shinyapps.io/sise_rct/

Set your intervention and contextual factors

Baseline WASH conditions. The proportion of population with existing WASH infrastructure similar to the intervention.

0%		25	%							100%
-	· I ·			· I ·	· I ·	· I ·	· ·	· ·	1 1 1	
0	10	20	30	40	50	60	70	80	90	100

Intervention compliance. The proportion of the intervention group that receives and uses WASH infrastructure.

0%							75	5%		100%
-	· •	· I ·	· I ·	· •	· •	· I ·	- ($D_{T^{T}}$	1	
0	10	20	30	40	50	60	70	80	90	100

Basic reproduction number. The number of expected cases generated by one case in an otherwise susceptible population.

https://umich-biostatistics.shinyapps.io/sise_rct/

Estimate the baseline prevalence and intervention effectiveness

https://umich-biostatistics.shinyapps.io/sise_rct/

Prevalence in	Prevalence in	Non-intervenable	Intervention	
control arm	intervention arm	prevalence	effectiveness	
6.4	3.1	0	51.2%	

See how sensitive the intervention is to each intervention and contextual factor.

ttps://umich-biostatistics.shinyapps.io/sise_rct/

Ro

Conclusions

- Not surprisingly, the sensitivity of intervention effectiveness to an intervention or contextual factor is highly sensitive to the other factors.
- These factors likely underly the heterogeneity in trial outcomes.
- Local contextual factors must be accounted for when developing priorities for interventions.
- Mechanistic modeling can both aid in this intervention planning and help to estimate how the results of an intervention in one location will translate to another location.

Acknowledgments

Core Team

- Joe Eisenberg
- Matthew Freeman
- Marisa Eisenberg
- Mondal Zahid

Funded by

Collaborators

- Alicia Kraay
- Benjamin Arnold
- Sania Ashraf
- Jade Benjamin-Chung
- John Colford, Jr
- Ayse Ercumen

FS foundation

BILL& MELINDA

- Stephen Luby
- Amy Pickering

EMOF

- Claire Null
- Mahbubur Rahman

SCHOOL OF PUBLIC HEALTH

Y OF MICHIGAN

Questions?

https://umich-biostatistics.shinyapps.io/sise_rct/

https://doi.org/10.1101/2024.03.09.24304020