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Wastewater data



Wastewater surveillance is a promising technology

Potential for early warning
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Nationally, the wastewater
viral activity level for COVID-
19 is currently high.
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Potential for parallel quantification
of dozens of pathogens




f NATIONAL WASTEWATER ©
SURVEILLANCE SYSTEM

Covid-SURGE Risk Estimator

The Covid-SURGE (Signaling Unprecedented Rises in
Groupwide Exposure) Risk Estimator tool synthesizes
wastewater SARS-CoV-2 viral concentrations with county-level
case counts, hospitalizations, deaths, and vulnerability to
provide a holistic view of COVID-19 exposure risk. For more
information about the data and methods used, download the
documentation here.

The
Rockefeller
Foundation

Mathematica.

Progress Together

Criterion 1: Was the wastewater concentration higher than any concentration measured over the
past month?

Criterion 2.1: Did the concentration represent a 100% increase or more from the previous sample?
Criterion 2.2: Did the concentration represent a percent increase that was higher than any
observed over the past month?

Criterion 3: Did the wastewater concentration become detectable after one month of
concentrations below the limit of detection?

Flag as a community-level surge if:
[Criteria 1 and 2.1] OR [Criteria 1 and 2.2] OR [Criteria 3] were met

Keshaviah PNAS (2023) DOI: 10.1073/pnas.2216021120
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https://data.ohio.gov/wps/portal /gov/data/projects /wastewater+surveillance
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Wastewater data has intrinsic, biological noise

Rates of shedding into wastewater
vary between individuals. For
comparison, peak nasal viral loads
vary >100x between individuals.

Peak Viral Load According to Variant
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Kissler NEJM (2021) doi: 10.1056/NEJMc2102507

If the wastewater signal were the mean shedding across
infected individuals in a sewershed, then variance in the
wastewater signal would decline with higher disease
prevalence and higher population size.

Log(coefficient of variation
in no. genome copies
measured in the sewershed)
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Wastewater has noise due to sites,
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Site: 1023,
Site: 1066
Site: 1129,
Site: 1225
Site: 1227,
Site: 1228,
Site: 1249,
Site: 1603
Site: 1915
Site: 1916,
Site: 2048,
Site: 2413,

sampling, and labs

Lab: 46
Lab: 46
Lab: 46
Lab: 80
Lab: 80
Lab: 80
Lab: 80
Lab: 44
Lab: 4612
Lab: 44
Lab: 46
Lab: 46

Site: 818, Lab: 44

Site: 992, Lab: 44

Some sites report nearly daily, others less
than once per week

Some sites have high sample-to-sample
variability, others much less

Some sites report data within the week,
others report weeks later

Sites can drop in and out

Sites switch sampling method, lab, or lab
method



Increasing the Utility ;'\,:

-

of Wastewater-based
Disease Surveillance for
Public Health Action

A Phase 2 Report

Consensus Study Report

CONCLUSIONS AND RECOMMENDATIONS

To be most actionable and reliable, a national wastewater surveillance system should use
representative sampling methods and move toward consistent sampling at all participating long-
term sampling sites. Representative sampling methods are considered those that effectively capture
waste input from a community over a given time period. At most sites, this would mean flow-weighted
composite samples of wastewater influent. Solids sampling is also a promising strategy, although more
characterization is needed on the time frame of inflows that are represented by solids sampling (compared
to liquid composite samples of the inflow) and methods to ensure consistency and comparability.

Rigorous data analysis efforts are needed to determine whether a single standardized
analytical method is necessary to improve NWSS comparability or whether other approaches are
reasonable. To minimize interlaboratory variability, the committee identified four alternative strategies:
(1) defining acceptance criteria for performance, (2) limiting methods only to those that perform as well
as an approved reference method, (3) developing a standard method, and (4) using as yet undiscovered
data normalization approaches.



Build analytical methods that work around known variabilities gr s

Entire state population
contributes to state-level
hospital admissions

Populations in each wastewater
catchment area contribute to
site-level wastewater concentration

Account statistically for variations between
data sites, including: wastewater facilities,
wastewater lab methods, and hospital
admissions reporting systems




Use Bayesian signal fusion to combine wastewater data with

existing data streams

Hospital
admissions data data

~
Y

Wastewater-
informed forecasts
of hospital admissions

Wastewater

£oC

Bayesian hierarchical approach for
wastewater data:

» Each site has a true number of people
infected, connected to an epidemiological
dynamics model

* There is some function that relates people
infected with genomes shed into
wastewater

* Each site has some adjustment factor,
between true genomes shed and observed
concentrations

* Adjustment factors are partially pooled

https://github.com/cdcgov/wastewater-informed-covid-forecasting
e


https://github.com/cdcgov/wastewater-informed-covid-forecasting

SARS-CoV-2 variant prevalences



CDC's variant nowcasting methodology has stayed mostly constant

Morbidity and Mortality Weekly Report

Genomic Surveillance for SARS-CoV-2 Variants Circulating in the United States,

December 2020-May 2021
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Using multiple genomic signals could improve forecasts

Clinical genomic data : :
Weighted and Nowcast Estimates
Pipeline for SARS-CoV-2 in United States for 2-Week Period..
Genomic Surveillance > _ _
In the United States, COC tracks emerging /) Hover over {or tap in mobile) any lineage of
variants through genomic surveillance b interest to see the amount of uncertainty in that
using a multilayered approach
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Different genomic signals cannot be naively combined %

Key strengths (Human) populations Data type

National SARS-CoV-2 Strain  Genome quality, Hospitalized cases Weeks Counts
Surveillance (NS3) sample size
National Wastewater Scope of monitoring, Hundreds of communities  Days Proportions
Surveillance System (NWSS) turnaround time across the US
Traveler-based Genomic Genome International travelers ~1 week  Counts/pools
Surveillance (TGS) quality, turnaround

time



The relevant entities to be modeled change over time E){"

Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the
Delta (B.1.617.2) and Omicron (B.1.1.529)Variants — United States,

une -January 2022
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| For example,
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= Z::ma e Inthe USinJanuary 2022, “Omicron”
T et could reasonably mean B.1.1.529

B eosion * A month later, it was important to
L e distinguish BA.1 and BA.2

B o e Later, BA.4, BA.5, XBB, etc.

L oo For modelers, the applicable modeling
[ tomsae units (i.e., taxa) could be driven by
cladistics or epidemiology
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https://www.cdc.gov/mmwr/volumes/71/wr/mm?7106a4.htm
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Relevant forecasting targets will differ by application E,'g

Timin Data quantity & Utility of current variant
9 quality nowcasting methods

Will this new taxon (e.g.,  Early, at variant : :

: : Relatively poor Relatively poor
variant) trigger a wave? emergence
When will taxon X achieve Relatively poor to : :
Y% prevalence? I 9 [P relatively high NAEHNEDY il



The most urgent question was "will this variant drive a wave?"

The public might have observed the urgency of this question,
and the uncertainty around its answer, in places like Twitter.

This data is out of the United Kingdom and discusses the “Delta” variant.

As you can see, cases are up but hospitalizations and deaths are way down
compared to the second wave.

We are seeing a “casedemic™ once again.

> All signs point to an XBB-driven Fall COVID wave, which looks like it will
begin in August. if anyone cares what | think, my recommendation is to get

- eay . Third
the monovalent XBB vaccine boost as soon as it’s available. /

If you're wondering why we're concemed about the coming wave of COVID,
Projections for COVID-19 wastewater viral signal, O Sara eloquently answers that question here.

EG.51 (Eris) takes on some clinical traits of Delta with the infectivity of
Omicron.

Brace for impact.
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Variant forecasting informed monoclonal antibody deployment %

™ NEW ENGLAND JOURNALof MEDICINE

Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19

PHASE 3, DOUBLE-BLIND, RANDOMIZED, CONTROLLED TRIAL

4 Bamlanivimab Placebo
+ Etesevimab

/ / ™
High-risk ambulatory patients (212 years h\/ g(?{/

old) with mild or moderate Covid-19 N=518 N=517

Hospitalization or death 11 Patients 36 Patients
from any cause by day 29 S (2117%) 700k S
Risk difference, —4.8 percentage points; 95% CI, =7.4 to -=2.3; P<0.00

No. of deaths 0 10

Bamlanivimab plus etesevimab significantly reduced the incidence of Covid-19-related

hospitalization and death among high-risk ambulatory patients.

M. Dougan et al. 10.1056/NEJM0a2102685

For example, bamlanivimab/etesevimab

* Feb 2021: Approved for use (US FDA Emergency Use
Authorization).

* Jun 2021: Distribution paused as Beta and Gamma variants
grew. Considered ineffective against those variants.

e Sep 2021: Distribution restarted when Beta and Gamma failed to
spread >5%.

* Oct 2021: Distribution to Hawaii paused because Hawaii had >5%
Delta. Considered ineffective against Delta.

e (Oct2021: Distribution restarted because determined that Delta
was not resistant.

* Jan 2022: Distribution stopped because considered ineffective
against Omicron.

 EUA later revoked, after dominance of Omicron was assured.



There is likely utility in jointly modeling variant prevalences

and counts of infections

A. Percentage of SARS-CoV-2 varants
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Growth in numbers of infections is more
important than growth in proportional
prevalence.

* Proportional prevalence is not the same as total
infections.

* High proportional prevalence of a taxon (e.g.,
“variant”) could be a good thing (e.g., ifit's a
low-virulence taxon).

However, it is unclear if multi-strain forecasts of
infection counts will outperform a combination of
(1) strain-agnostic infection count forecasts, and
(2) variant prevalence forecasts.

https://www.cdc.gov/mmwr/volumes/72 /wr/mm?7224a2.htm
e e e



Conclusions

1. Respect the data generating process. Build models that account for known
sources of noise, either statistically or mechanistically.

2. Judge models on performance. Build models based on what will plausibly
improve performance.

3. For a model to be useful to public health, it must demonstrably outperform
the methods actually used by public health practitioners. A wastewater-
only-in, hospitalizations-out model for forecasting hospitalizations will not
demonstrably outperform eyeballing of hospitalization data trends.

4. Models should be built within frameworks that make evaluation and
comparison as simple as possible.

5. Signal fusion for wastewater modeling is difficult but full of promise.
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