Featured Publications

EXPLORE IDM’S CURRENT RESEARCH PUBLICATIONS

Filter options:

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, Eurika Kaiser & J. Nathan Kutz

NATURE COMMUNICATIONS

Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth’s magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz

SCIENCE ADVANCES

We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor and J. Nathan Kutz

SCIENCE ADVANCES

We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

SIAM NEWS

Ordinary and partial differential equations are widely used throughout the engineering, physical, and biological sciences to describe the physical laws underlying a given system of interest. We implicitly assume that the governing equations are known and justified by first principles, such as conservation of mass or momentum and/or empirical observations. From the Schrödinger equation of quantum mechanics to Maxwell’s equations for electromagnetic propagation, knowledge of the governing laws has allowed transformative technology (e.g., smart phones, internet, lasers, and satellites) to impact society. In modern applications such as neuroscience, epidemiology, and climate science, the governing equations are only partially known and exhibit strongly nonlinear multiscale dynamics that are difficult to model. Scientific computing methods provide an enabling framework for characterizing such systems, and the SIAM community has historically made some of the most important contributions to simulation-based sciences, including extensive developments in finite-difference, finite-element, spectral, and reduced-order modeling methods.

PLOS

Using a computational model of the Caenorhabditis elegans connectome dynamics, we show that proprioceptive feedback is necessary for sustained dynamic responses to external input. This is consistent with the lack of biophysical evidence for a central pattern generator, and recent experimental evidence that proprioception drives locomotion. The low-dimensional functional response of the Caenorhabditis elegans network of neurons to proprioception-like feedback is optimized by input of specific spatial wavelengths which correspond to the spatial scale of real body shape dynamics. Furthermore, we find that the motor subcircuit of the network is responsible for regulating this response, in agreement with experimental expectations. To explore how the connectomic dynamics produces the observed two-mode, oscillatory limit cycle behavior from a static fixed point, we probe the fixed point’s low-dimensional structure using Dynamic Mode Decomposition. This reveals that the nonlinear network dynamics encode six clusters of dynamic modes, with timescales spanning three orders of magnitude. Two of these six dynamic mode clusters correspond to previously-discovered behavioral modes related to locomotion. These dynamic modes and their timescales are encoded by the network’s degree distribution and specific connectivity. This suggests that behavioral dynamics are partially encoded within the connectome itself, the connectivity of which facilitates proprioceptive control.

 

ARXIV.ORG

We develop an algorithm for model selection which allows for the consideration of a combinatorially large number of candidate models governing a dynamical system. The innovation circumvents a disadvantage of standard model selection which typically limits the number candidate models considered due to the intractability of computing information criteria. Using a recently developed sparse identification of nonlinear dynamics algorithm, the sub-selection of candidate models near the Pareto frontier allows for a tractable computation of AIC (Akaike information criteria) or BIC(Bayes information criteria) scores for the remaining candidate models. The information criteria hierarchically ranks the most informative models, enabling the automatic and principled selection of the model with the strongest support in relation to the time series data. Specifically, we show that AIC scores place each candidate model in the strong support, weak support or no support category. The method correctly identifies several canonical dynamical systems, including an SEIR (susceptibleexposed-infectious-recovered) disease model and the Lorenz equations, giving the correct dynamical system as the only candidate model with strong support

IFAC-PAPERSONLINE

Identifying governing equations from data is a critical step in the modeling and control of complex dynamical systems. Here, we investigate the data-driven identification of nonlinear dynamical systems with inputs and forcing using regression methods, including sparse regression. Specifically, we generalize the sparse identification of nonlinear dynamics (SINDY) algorithm to include external inputs and feedback control. This method is demonstrated on examples including the Lotka-Volterra predator-prey model and the Lorenz system with forcing and control. We also connect the present algorithm with the dynamic mode decomposition (DMD) and Koopman operator theory to provide a broader context.

AIMS

This work develops compressed sensing strategies for computing the dynamic mode decomposition (DMD) from heavily subsampled or compressed data. The resulting DMD eigenvalues are equal to DMD eigenvalues from the full-state data. It is then possible to reconstruct full-state DMD eigenvectors using  1-minimization or greedy algorithms. If full-state snapshots are available, it may be computationally beneficial to compress the data, compute DMD on the compressed data, and then reconstruct full-state modes by applying the compressed DMD transforms to full-state snapshots.

 These results rely on a number of theoretical advances. First, we establish connections between DMD on full-state and compressed data. Next, we demonstrate the invariance of the DMD algorithm to left and right unitary transformations. When data and modes are sparse in some transform basis, we show a similar invariance of DMD to measurement matrices that satisfy the restricted isometry property from compressed sensing. We demonstrate the success of this architecture on two model systems. In the first example, we construct a spatial signal from a sparse vector of Fourier coefficients with a linear dynamical system driving the coefficients. In the second example, we consider the double gyre flow field, which is a model for chaotic mixing in the ocean. 

Fig. 3

Flow-chart illustrating compressed DMD and compressed sensing DMD.

EPJ

The increasing ubiquity of complex systems that require control is a challenge for existing methodologies in characterization and controller design when the system is high-dimensional, nonlinear, and without physics-based governing equations. We review standard model reduction techniques such as Proper Orthogonal Decomposition (POD) with Galerkin projection and Balanced POD (BPOD). Further, we discuss the link between these equation-based methods and recently developed equation-free methods such as the Dynamic Mode Decomposition and Koopman operator theory. These data-driven methods can mitigate the challenge of not having a well-characterized set of governing equations. We illustrate that this equation-free approach that is being applied to measurement data from complex systems can be extended to include inputs and control. Three specific research examples are presented that extend current equation-free architectures toward the characterization and control of complex systems. These examples motivate a potentially revolutionary shift in the characterization of complex systems and subsequent design of objective-based controllers for data-driven models.

SIAM JOURNAL OF APPLIED MATHEMATICS

Choosing a limited set of sensor locations to characterize or classify a high-dimensional system is an important challenge in engineering design. Traditionally, optimizing the sensor locations involves a brute-force, combinatorial search, which is NP-hard and is computationally intractable for even moderately large problems. Using recent advances in sparsity-promoting techniques, we present a novel algorithm to solve this sparse sensor placement optimization for classification (SSPOC) that exploits low-dimensional structure exhibited by many high-dimensional systems. Our approach is inspired by compressed sensing, a framework that reconstructs data from few measurements. If only classification is required, reconstruction can be circumvented and the measurements needed are orders-of-magnitude fewer still. Our algorithm solves an $\ell_1$ minimization to find the fewest nonzero entries of the full measurement vector that exactly reconstruct the discriminant vector in feature space; these entries represent sensor locations that best inform the decision task. We demonstrate the SSPOC algorithm on five classification tasks, using datasets from a diverse set of examples, including physical dynamical systems, image recognition, and microarray cancer identification. Once training identifies sensor locations, data taken at these locations forms a low-dimensional measurement space, and we perform computationally efficient classification with accuracy approaching that of classification using full-state data. The algorithm also works when trained on heavily subsampled data, eliminating the need for unrealistic full-state training data.