Background
Ambitious global goals have been established to provide universal access to affordable modern contraceptive methods. To measure progress toward such goals in populous countries like Nigeria, it’s essential to characterize the current levels and trends of family planning (FP) indicators such as unmet need and modern contraceptive prevalence rates (mCPR). Moreover, the substantial heterogeneity across Nigeria and scale of programmatic implementation requires a sub-national resolution of these FP indicators. The aim of this study is to estimate the levels and trends of FP indicators at a subnational scale in Nigeria utilizing all available data and accounting for survey design and uncertainty.
Methods
We utilized all available cross-sectional survey data from Nigeria including the Demographic and Health Surveys, Multiple Indicator Cluster Surveys, National Nutrition and Health Surveys, and Performance, Monitoring, and Accountability 2020. We developed a hierarchical Bayesian model that incorporates all of the individual level data from each survey instrument, accounts for survey uncertainty, leverages spatio-temporal smoothing, and produces probabilistic estimates with uncertainty intervals.
Results
We estimate that overall rates and trends of mCPR and unmet need have remained low in Nigeria: the average annual rate of change for mCPR by state is 0.5% (0.4%,0.6%) from 2012-2017. Unmet need by age-parity demographic groups varied significantly across Nigeria; parous women express much higher rates of unmet need than nulliparous women.
Conclusions
Understanding the estimates and trends of FP indicators at a subnational resolution in Nigeria is integral to inform programmatic decision-making. We identify age-parity-state subgroups with large rates of unmet need. We also find conflicting trends by survey instrument across a number of states. Our model-based estimates highlight these inconsistencies, attempt to reconcile the direct survey estimates, and provide uncertainty intervals to enable interpretation of model and survey estimates for decision-making.