Importance: Inappropriate use of antibiotics for diarrheal illness can result in adverse effects and increase in antimicrobial resistance.
Objective: To determine whether the diarrheal etiology prediction (DEP) algorithm, which uses patient-specific and location-specific features to estimate the probability that diarrhea etiology is exclusively viral, impacts antibiotic prescriptions in patients with acute diarrhea.
Design, setting, and participants: A randomized crossover study was conducted to evaluate the DEP incorporated into a smartphone-based electronic clinical decision-support (eCDS) tool. The DEP calculated the probability of viral etiology of diarrhea, based on dynamic patient-specific and location-specific features. Physicians were randomized in the first 4-week study period to the intervention arm (eCDS with the DEP) or control arm (eCDS without the DEP), followed by a 1-week washout period before a subsequent 4-week crossover period. The study was conducted at 3 sites in Bangladesh from November 17, 2021, to January 21, 2021, and at 4 sites in Mali from January 6, 2021, to March 5, 2021. Eligible physicians were those who treated children with diarrhea. Eligible patients were children between ages 2 and 59 months with acute diarrhea and household access to a cell phone for follow-up.
Interventions: Use of the eCDS with the DEP (intervention arm) vs use of the eCDS without the DEP (control arm).
Main outcomes and measures: The primary outcome was the proportion of children prescribed an antibiotic.
Results: A total of 30 physician participants and 941 patient participants (57.1% male; median [IQR] age, 12 [8-18] months) were enrolled. There was no evidence of a difference in the proportion of children prescribed antibiotics by physicians using the DEP (risk difference [RD], -4.2%; 95% CI, -10.7% to 1.0%). In a post hoc analysis that accounted for the predicted probability of a viral-only etiology, there was a statistically significant difference in risk of antibiotic prescription between the DEP and control arms (RD, -0.056; 95% CI, -0.128 to -0.01). No known adverse effects of the DEP were detected at 10-day postdischarge.
Conclusions and relevance: Use of a tool that provides an estimate of etiological likelihood did not result in a significant change in overall antibiotic prescriptions. Post hoc analysis suggests that a higher predicted probability of viral etiology was linked to reductions in antibiotic use.