Software

  • Age-dependent partnering and the HIV transmission chain: a microsimulation analysis

    Efficient planning and evaluation of human immunodeficiency virus (HIV) prevention programmes requires an understanding of what sustains the epidemic, including the mechanism by which HIV transmission keeps pace with the ageing of the infected population. Recently, more detailed population models have been developed which represent the epidemic with sufficient detail to characterize the dynamics of…

  • Description of the EMOD-HIV Model v0.7

    The expansion of tools against HIV transmission has brought increased interest in epidemiological models that can predict the impact of these interventions. The EMOD-HIV model was recently compared to eleven other independently developed mathematical models of HIV transmission to determine the extent to which they agree about the potential impact of expanded use of antiretroviral…

  • HIV Treatment as Prevention: Models, Data, and Questions-Towards Evidence -Based Decision-Making

    Antiretroviral treatment (ART) for those infected with HIV can prevent onward transmission of infection, but biological efficacy alone is not enough to guide policy decisions about the role of ART in reducing HIV incidence. Epidemiology, economics, demography, statistics, biology and mathematical modelling will be central in framing key decisions in the optimal use of ART.…

  • HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa

    Background Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes…

  • A malaria transmission-directed model of mosquito life cycle and ecology

    Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for…