Data, Dynamics, and Analytics

  • (Preprint) Dynamic Mode Decomposition with Control

    We develop a new method which extends Dynamic Mode Decomposition (DMD) to incorporate the effect of control to extract low-order models from high-dimensional, complex systems. DMD finds spatial-temporal coherent modes, connects local-linear analysis to nonlinear operator theory, and provides an equation-free architecture which is compatible with compressive sensing. In actuated systems, DMD is incapable of…

  • Modeling disease transmission near eradication: An equation free approach

    Although disease transmission in the near eradication regime is inherently stochastic, deterministic quantities such as the probability of eradication are of interest to policy makers and researchers. Rather than running large ensembles of discrete stochastic simulations over long intervals in time to compute these deterministic quantities, we create a data-driven and deterministic “coarse” model for…

  • Compressive Sampling and Dynamic Mode Decomposition

    This work develops compressive sampling strategies for computing the dynamic mode decomposition (DMD) from heavily subsampled or output-projected data. The resulting DMD eigenvalues are equal to DMD eigenvalues from the full-state data. It is then possible to reconstruct full-state DMD eigenvectors using„“1-minimization or greedy algorithms. If full-state snapshots are available, it may be computationally beneficial…